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Abstract

The goal of thls dissertation is to determine the extent to which learning debugging in the

context of LOGO programming improves children's debugging in other programming and non-

programming contexts. The approach involves detailed task analysis of debugging (in the

form of a computer simulation model), development of model-based instructional guidelines

for teaching children debugging skills they do not learn "by discovery." and assessment of

the debugging skills children are able to transfer to other programming and non-programming

tasks. Twenty-tWo 8- to I1-year-old students took two 25 hour LOGO courses. Halt of the

students were taught debugging In the context of a LOGO graphics course first and then a

LOGO list-processing course. The other half were taught debugging in the same two mini-

courses but In the reverse order. Debugging skills were tested at three times during each

mini-course. The performance of children taking tests In the first mfrtl-course was compared

with the performance of children taking the same tests in the seconFrmlni-course to reveal

the transfer from one LOGO domain to the other. Debugging on no44-pregramming tasks

was assessed prior to the first mini-course, between minl-courses, and after the last mini-

course to assess more remote transfer of debugging skills. Assessments of students'

debugging skill revealed large savings from the first to the second mini-course. Students'

Increasing use of selective search strategies increased the accuracy. efficiency, and :peed of

their debugging. Corresponding Improvements were demonstrated on a variety of tasks

requiring debugging of non-computer directions. Children shifted from exhaustive to selectiVe

search strategies which increased the accuracy. efficiency, and speed with which they

debugged written directions; Thus; the debugging strategies learned from explicit Instruction

in the the first computer programming mini-course had a positive impact on children's

debugging in both new programming and non-programming situations.

9
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1. Seeking skill transfer from computer programming

Transfer of training is the educator's dream but the researcher's nightmare. Clearly,

teachers will be moat effective when the learning of one instructional unit contributes to the

learning of a subsequent unit or when a current lesson is facilitated by emphasizing relevant

previous learning. At the calm time, teachers hope that school lessons can be useful for

soMng "real world" problems. Essentially, educators strive to teach transferable skills

because it would be impossible to teach all the knowledge students will need in their

lifetimes. Despite the educator's dream, transfer is very difficult for researchers to

demonstrate. Studies of human problem solving consistently find that experience with one

problem rarely yields transfer to 'other problems even If they are similar. In the face of
these negative results, could more distant transfer ever be expected? Or should educators

abanden their dream?

The domain of LOGO computer programming is an interesting case in point because of

the striking contrast between the grandiose claims for transfer of high-level thinking skills

from programming experience and the largely negative results of LOGO transfer studies.
This dissertation focuses on one central aspect of learning to 'program learning 14:)w to

debug faulty programs. This aspect has been identified as one oriteil irfamerful ideas" that
can generalize far beyond the programming context in which it is acquired' (Payert, t980).

In more practical terms, debugging Is a good candidate for special focus since failure to
acquire good debugging skills could represent a "significant bottleneck to the development

of programming competencies and whatever thinking skills may be fostered through high-level

programming proficiencies."

Transfer of debugging skill is expected because children discover in programming

environments that 1) complex procedures can be constructed from subcomponents, 2) errors

may derive from just a few buggy components, and 3) sources of error can be detected
and corrected (debugged). In other environments, children generalize that 1) most of what

they do is constructed from smaller components, 2) errors may derive from just a few buggy

components, and 3) sources of error can be detected and corrected (debugged). Papert

(1no) suggests the power of the debugging idea by saying: "Errors benefit us because

1 This comment came from an insightful but anonymous reviewer.

10
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.they lead us to study what happened, to understand what went wrong, and, through

understanding, to fix it. Experience with computer programming leads children more

effectiVely than any other activity to 'believe in' debugging."

Unfortunately, this notion of transfer and the term "debugging" itself are ambiguous; thiS

makes it difficult to evaluate claims for the cognitive consequences of learning debugging In

a LOGO environment. Debugging can be interpreted along a wide spectrum, ranging from

an all-encompassing notion of self-Improvement, to a more restricted view of eliminating

faulty components in physical or mental procedures2, to a constrained definition that is

closest to its origins in computer programming: it is what one does to get a malfunctioning

(buggy) computer program to work correctly. The potential for transfer of debugging skills is

also difficult to interpret. The goal of this dissertation is to use a detailed performance

theory as the basis for determining the extent to which learning debugging in a LOGO
context improves children's debugging in other programming and non-programming domains.

In this chapter, I Will describe the LOGO computer programming language and the high-

level thinking skills educators dream that students acquire and transfer to other domains.

Then I will briefly review the literature on the reality of transfer from LOGO programming

experience and propose several reasons for the primarily negative results of the LOGO

transfer studies. Finally, I will develop an approach for facilitating and assessing transfer in

the LOGO domain based on a review of several transfer success stories from the adult

problem-solving literature.

1.1 The dream

Proponents of LOGO claim that programming experience can expand children's intellectual

power (Paper!, 1972, 1980). They claim LOGO becomes a tool for life: once it becomes a

mental model for the child, his thinking processes become more conscious and he can

master concepts previously thought too abstract. The key element of LOGO is said tu be
that powerful ideas are embedded in a simple language. The next two sections will

describe the powerful constructs of this simple language and then enumerate the powerful

ideas children may be able to learn from experience with this domain.

_
2For example; juggling is one of Paoert's favorite domains for demonstrating learning via debugging. Also

Browf. & Burton (1978) have convincingly demonstrated the need for debugging in children's acquisitioo of
arithmetic procedures;
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1.1.1. A simple language with powerful constructS

At first glance, LOGO appears to be a simplistic programming language designed solely to

enable young children with little trahilng to create interesting graphic effects. Yet beneath

its facade of simplicity, LOGO is a powerful programming language which allows

subprocedures, variables, and recursion in graphics as well as list-processing. The following

discussion will demonStrate the simple yet powerful nature of LOGO by briefly introducing the

graphics and list-processing domains.

In LOGO graphics, the user directs the movement of the cursor around the screen using

four basic commands: FD (forward), BK (back), LT (left turn), and RT (right turn). Each of

these commands requires a numerical argument to indicate the diStance to move (for FD

and BK) or the number of degrees to turn (for LT and RT). In addition, PU (penup) and

PD (pendown) control the position of an Imaginary pen; when the pen Is down, any cursor

movement leaves a trace on the screen. With these six, short, semantically meaningful

commands, young children can create pleasing designs in LOGO'S interactive mode.

However, children can begin to utilize the power of LOGO by using its simple screen

editor to write and revise programs. These programs can be calWd. Interactively or from
. within other programs. LOGO also has primitives to direct the flow otcontrol; theso include

REPEAT n (list of commands], which repeats the list of commends n times; IF

<conditional> THEN <commands> ELSE <commands>, which is a basic conditional

statement; and STOP, which stops the execution of the current program and returns control

to the calling procedure.

The example programs in Figure 1 demonstrate the basic graphics capabilities of LOGO

The procedure definitions are listed on the left. For easier reading, some commands are

indented and arranged on separate lines. The interactive calls and outcomes of the

procedures are on the right. The starting position of the turtle is indicated by an arrow. In

Figure 1a, the REPEAT statement is used to write programs to draw a diamond and a
curve. The leaf program is written using a repeated curve. These programs are combined

to make a program to draw a flower. Each of the programs includes a variable (:D. :C. B.

and :A) so that one can draw flowers of various sizes. The first line of commands draws

the leaves and the stem portions below and between the leaves. The second line draws

the remainder of the stem, and the third line uses a REPEAT statement to draw ten
diamonds at equally spaced orientations. Figure 1 b illustrates how a recursive procedure
can generate a row of flowers of decreasing size.

.12
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Insert Figure 1 about here
m.................m.wee.re*..

There is more to LOGO than graphics, however. The Hst-processing capabilities of LOGO

are similar to LISP, the artificial intelligence language on which It is based. The user can

PRINT information to the computer screen, MAKE global variable assignments, and READ

keyboard input. OUTPUT makes the result of a procedure available to a calling procedure.

LOGO also has commands to separate and join text: for example, FIRST takes the first

element of a word or list and BUTFIRST takes the rest. WORD combines its arguments

into a LOGO word and SENTENCE combines its arguments into a LOGO list. Here again,

the commands are designed to be semantically meaningful. However, the syntax for the list-

proceesing commands is more complicated than for the graphics commands because of the

punctuation necessary to distinguish commands from variables from text.

The same powerful constructs described above can be used for list-processing. The

example programs in Figure 2 demonstrate the basic list-processing capabilities of LOGO.

Here, the procedure definitions are listed above the interactive calls and output. In Figure

2a, the PIGGY program translates an input word into piglatin by combining (WORD) all but

the first letter (BUTFIRST), then the first letter (FIRST), and finally the "ay" ending.

OUTPUT is used to pass the resulting word tc another command, In this case, PRINT.

Figure 2b illustrates the use of recursion to translate an entire sentence into piglatin.

Finally, Figure 2c shows a program written to make the other two programs accessible to a

naive user. It asks for a sentence to translate, does the translation, and offers an option to

continue. The user's answer Is set equal to the global variable Y and is then tested by the

conditional In the next line. A "no" answer yields a farewell statement; any other answer

causes the PIGLATIN program to run again.

Insert Figure 2 about here

As the graphics and list-processing examples demonstrate, LOGO offers an easy

introduction to programming as well as opportunities to develop advanced programming skills.

However, the great expectation is that children will learn thinking skills in addition to

programming skills. Pea & Kurland (1984) comment on the widespread belief that

"...through learning tO program, children are learning much more than
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programming, far more than programming 'facts'. It is said that children will
acquire PoWerfully general higher cognitive skills such as planning abilities, problem-
solving heuristics, and reflectiveness on the revisionary character of the problem
SolAng pmeeSs itself. This belief, although new in its application to this domain, is
an old idea in a new costume which has been worn often before. ;n Its common
extreme form, It is based on an assumption about learning - that spontaneous
experience with powerful symbolic system will have beneficial cognitive
consequanceS, especially for higher order cognitive skills. 8kfillar arguments have
been offered in centuries past for mathematics, logic, writing syStems, and Latin
(e.g., see Bruner, 1966; Cole & Griffin, 1980; Goody, 1977; Olson, 1976; Ong,
1982; Vygotsky, 1978)."

1.1.2. The possibility of powerful ideas

The "powerful ideas" children might develop as a result of experience with LOGO have
been specified in slightly different ways by several researchers since they were introduced by

Seymour Papert (1972, 1980).

P.H. Winston (1977), for exarnple views the possible powerful ideas primarily in terms of

programming concepts more broadly applied. He suggests applying the idea of state

variables such as the turtle's orientation and position to the temperature in a room, applying

the idea of control variables like the move and turn commands given to the turtle to other

control variables such as force, applying the idea of subgoaling to other problems where a

dMde and conquer strategy is effective, and applying the idea of debugging to other

situations where the initial solution is unlikely to be perfect but where the primary parts are

basically correct.

In contrast, Feurzeig et al. (from Pea and Kurland. 1984) suggest that programming

changes thought as a result of the thinking skills employed, not just the specific

programming ideas a programmer must use. For example, rigorous thinking and precise

expression will develop because the computer requires programmers to use such skills.

Facility with general heuristics such as planning, analogy, and problem decomposition will

increase since programming provides models of them. Debugging will improve because it is

central to the interactive nature of programming. Self-consciousness and literacy about

problem-solving processes will be heightened since programming provides a vocabulary for

discussing these pvocesses explicitly. In addition, general concepts of procedures, variables,

and hierarchy will develop simply because they are ideas encouraged In programming. Also,

recognition of multiple correct solutions, each with their own benefits, instead of a single

best answer should develop since programming distinguishes process from product in that

way.

14
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Unn and Fisher (1983) describe powerful Ideas arising from styles of interaction With the

computer. The computer's interactive feedback should yield greater cognitive activity. The

precision requIrIA by the interpreter should yield complete specifications of ideas. The

consistency of Wrdback is beneficial to the student; there is no ambiguity and no prejudice.

Linn and Fisher also Suggest that the challenge of computer programming leads to greater

motivation and that the possibility of multiple solutions leads to divergent thinking.

Finally, Clements and Gullo (1984) discuss powerful ideas as resulting from specific

learning activities encountered in a LOGO environment. They suggest that divergent thinking

should Improve as. a result of students' inventing, constructing, and modifying their own

projects. Since students reflect on their own thinking processes, they should make

metacognitive advances. Considering errors and fixes should increase reflectivity. As

abstract ideas become concrete in the LOGO microworld, cognitive development should be

accelerated. The experience of giving spatial commands to the turtle should improve

students' perspective-taking ability when giving directions.

In theory, other environments could be equally gcod contexts for learning debugging and

other high-level thinking skills. The advantage of LOGO over other environments is that It is

a microworld with a limited set of precisely F Acified units which behave in a precisely

specified manner. The Lop() language provides an external representation at an

appropriate level of access for elementary school children. Such a simplified context may

make debugging more comprehensible than in the "real" world of ill-specified units and

unpredictable behavior. The dream is that, once learned, thinking skills may be

generalizable beyond the LOGO ^-1/2roworld.

1.2 The nightmare

The transfer studies of LOGO are about as diverse as the interpretations of what powerful

ideas are available for learning, and the results of these evaluations seem contradictory.

Some researchers claim to demonstrate transfer, some fail to demonstrate transfer, and

others get mixed results even within the same study. Gorman and Bourne (1983) and

Degeiman et al. (1986) demonstrate transfer from LOGO to a rule-learning task. Brown and

Rood (1984) showed that LOGO and BASIC students improved in problem-solving ability, self-

esteem, and internalized locus of control. Schwartz et al. (1984) report that LOGO students

increase motivation and cognition scores more than a control group. They also show that

the LOGO group's math anxiety increases less and confidence decreases less than the

15
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control group. But Pea (1983) failed to show transfer of planning skills, and McGlify et al.

(1984) found that LOGO students demonstrated no better skills in procedurality and

debugging than StudentS wh-o had no LOGO experience. At the same time, Clements and

Gulio (1984) and Clements (1985) reported that LOGO experience improved divergent

thinking, reflectivity, direction giving, and metacognition, but not cognitive development.

Similarly, Garlick (1984) found improvements in school test scores, but not in spatial relations

or combinatorial thinking after LOGO experience. Mohamed (1985) showed that LOGO

students improved in spatial ability but not quantitative ability, ability to synthesize, or analytic

cognitive style.

This sampling does not exhaust the list of LOGO transfer studies (especially since many

unsuccessful studies are undoubtedly not a part of the published or circulated literature);

however, it Is representative enough for the purposes of this discussion. This section will

attempt to explain the nightmarish results in terms of the basic requirements for successful

transfer. The next section will then attempt to focus on the real possibility for achieving

transfer, based on the literature describing transfer of adult problem-solving skills.

By definition, transfer requires learning in the initial context_ and then exposure to a

second context in which the learned knowledge and skills are relevant. The literature on

LOGO transfer effects reports mixed results because of variation in the extent to which
these two requirements are satisfied. In the LOGO domain, learning and transfer are usually

studied in isolation, as if they were independent. Researchers interested in detailed

accounts of learning frequently focus on extremely simple, low-level skills acquired over a

few hours at most (see Roberts, 1984; Cuneo, 1985; and Campbell et al, 1985). Several

researchers have examined the learning of higher level skills: for example, Kurland and Pea

(1983) studied chlidren's mental models of recursion. Mawby (1984) evaluated students'

understanding of variables and control structure, and McBride (1985) has begun to analyze

LOGO programmers developing strategies and knowledge. However, these studies of high-

level skills are not coordinated with studies of transfer, perhaps because they reveal

students' lack of significant high-level skill acquisition. On the other hand, researchers

interested in LOGO transfer frequently fall to document that students have improved on the

desired skills within the LOGO domain prior to evaluating transfer. Of the ten transfer

studies listed above, only three included assessments of learning (Pea and Kurland, 1983;

McGilly, 1984; and Garlick, 1984). Therefore. transfer of programming skill on the other

studies was assessed without a prior determination that the skill was ever acquired In the



TranSfer of Debugging Skill 10

first pimp. Without an understanding of what LOGO students have actually learned (or not

learned, as is often the case), transfer results are difficult to interpret. Positive results may

be due to nictIvatkmal factors, and negative results may only indicate that the required
LOGO skills were never learned.

In addition to neglecting to document learning, most researchers studying transfer from

LOGO fall to carefully consider the skills they expect students to learn or the skills required

by their transfer tasks, so there is often a mismatch between the transfer test and the
training. Though there is considerable variety in choice of transfer tests, positive transfer

results In the studies listed above tend to be on tasks involving skills with figures similar to
those used in LOGO, not high-level thinking skills. The school tests used in Garlick's (1984)
transfer test Involved questions about min, distancest and similar figure,. Clement§ and
Gullo (1984) used only the figural subtask of the Torrance test of creative thinking and
measured reflectivity using the Matching Familiar Figures Test. LOGO students orVy

improved more on the spatial part of the Developing Cognitive Abilities Test in Mohamed

(1985) study. The Skill similarity occasionally depends on the particular version of LOGO
used. Skills necessary for rule-learning tasks may be learned better in TI-LOGO, Wed by
Gorman and Bourne (1983), since It offers experience with animated sprites each of which
has many independent attributes including color, number, heading, speed, and shape.

On the other hand, negative results occur on tasks whose relation to LOGO experience

has not been specified, as well as usually not being documented. For 'example, Clements

and Gullo (1984) sought transfer to classification and seriation tests of cognitive development
and to metacognitive tasks (see also Clements, 1985). and Mohamed (1985) expected
improvement in ability to synthesize and analyze. Neither research group specified what
relevant LOGO skills students had actually learned. Pea and Kurland (1983) expected
transfer of planning skills and Garlick (1984) expected transfer of combinatorial thinking skills.

Both assessed learning of LOGO content and general programming skills, but neither

Specified nor assessed learning of the skills which were expected to transfer. McGill), et al.
(1984) did document improvements in procedurality and debugging skills prior to assessing

transfer of those skills; however, they failed to specify how the learned skills were relevant

to the transfer tasks (i.e., Tower of Hanoi for assessing procedurality and Mastermind for
assessing debugging).

In addition to the problems of not documenting learning and not specifying the skills to be

17
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learned and transfered, there are many other Methcide legit& prObleMe With most of the
LOGO studies, so their results are questionable; For example, in many of the transfer
studies, pwformance of different treatMent grOUPt Was compared on a post-test without

having any pre-test comparison (e.g., Degelman,1988; Gorman and Bourne,1983; Cie Merits

and Gullo, 1984; and Clements, 1985); Some which did include a pre-test comparison did

not use random assignment and had treatment groups with higher pre-test scores than the

control groups (e;g;; Schwartz et al., 1984 and Garlick, 1984). Others- had rid Centrel gedUe

at all (Gorman and Bourne,1983 and Brown and Rood, 1984); Finally, many of the reported

transfer effects were actually small differenCeS bOth ih terms of the absolute numbers and in

terms of the percentege improvement; (Schwartz et al. (1984) is the most striking eXample.)

The focus of this description has been on the principle that SWIGS falling re deMonstrate
transfee from LOGO cannot be offered as negative evidence of the possible cognitive

consequences of learning programming unless they Hilt deMenstratt that students actually
learned the potentially transferable skills and then choose a transfer task on which the**
particular skills are useful, though there are pieblems In determining the levels of usefulness;
Likewise, studies that successfully demonstrate transfer CartriOt be Offered aS posff
evidence unless they also demonstrate that the effect Is a result of students learning
relevant skills during the LOGO experience.

Re Searchers in other domains have paid careful attention to assuring learning and

specifying relevant skills for transfer. The next Section will Summarize their results and the
guidelines they offer for facilitating transferable learning and choosing appropriate transfer
tasks. These guidelines will be used to design a transfer study of LOGO debugging skills.

1.3 The reality

The literature on transfer of problem-Solving Ski HS hat Shown that when learning can be
assured, transfer is iikely. Furthermore, researchers have begun to specify what must be
learned for transfer to occur and to suggest ways to facilitate learning. Also, the transfer

literature has shown that transfer is better to tasks for which the relevance of the learned
skills can be recognized. Most importantly, these researchers are developing ways to decide

what is a relevant transfer task and what is not.
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1.3.1. Successful transfer of problerh-solving skilla

Bassok and Holyoak (1986) suggest that many of the transfer failures can be attributed to

insufficient learning sinCO few researchers provide more than one trial training. In fact,

Smith (1988) demonstrated that the provision of multiple training trials increased learning and

transfer scores in a study of transfer between Tower of Hanoi isomorphs.

However, Bassok and Holyoak (1986) also suggest that overlearning is not sufficient to

produce transfer. They view the difficulty of transfer as recognizing abstract structural

commonalities despite surface differences. They claim that the acquisition of general

schemes for problem types improves transfer since recognition of a novel instance is more

likely. They suggest that the provision of multiple examples is crucial to induction of

abstract schemes. Gick and Holyoak (1983) showed that transfer could .be enhanced on

isomorphic problems by giving solvers a direct hint to apply the previouisly used solution to

the new problem and that even greater enhancement resulted from requesting that solvers

describe the similarity between problems (and presumably abstract the relevant schema in

the process).

Bassok and Hoiyoak (1986) compared transfer from algebra's arithmetic-progression

problems to physics' constant-acceleration problems and vice verSa. They hypothesized and

found that there was more transfer from algebra to physics than in the other direction
because the wider variety of arithmetic-progression problems yielded a more abstract schema

which the subsequent physics problems were more likely to match. They described the

general schema as production rules with abstract variables that can be readily matched by

components of problems with the same structure. They concluded that training will produce
transfer to structurally identical problems to the extent that the "abstract training in a

problem schema is combined with practice in solving diverse examples." Bassok and
Holyoak (1986) also claimed that another facilitating factor In the physics and algebra

domains was that students were taught the skills directly.

Kotovsky, Hayes, and Simon (1985) claim that the amount of learning Is also related to the

source problem difficulty. The processing load determines how much information subjects

learn on a first problem that they can then transfer to a second problem. They showed

that increased difficulty on Tower of Hanoi isomorphs decreased the amount of transfer.

They attributed the decrease to a limitation of working memory capacity on the acquisition of
transferable information.
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Even If abetract learning does take place in one domain, transfer to a second domain
depends on the refevance of the learned skills to the new doamin. The original form of this
idea wall Thor Mike's (1919) Identical elements theory. He suggested that learning of one
stimulus response link would only affect other such links if some of the factors were
identical elements. Kleras and Bovair (1985) represented the elements of related procedures

as produCtion rules and demonstrated that there was more transfer between procedures

When they had more identical rules. However, Identical elements are difficult to identify and
count. Other studies (mentioned above) show that it is possible to transfer without identical
elements as long as the skill is represented abstractly enough, or production rules are
general enough, that the relevance of the previouSly learned skilit Is appare.a.

Sing ley and Anderson (1985) agree that transfer can be predicted by the degnsa of
overlap between tasks. They showed that learning a second text editing system took less

time, fewer keystrokes, and fewer errors despite a higher typing rate than learning the first.

However, they attributed this savings to transfer of the high-level goal structure and the
conceptual mappings between text-editinz commands and their actions.

Dalbey and Linn's (1984) research demonstrates the application of this principle in the
domain of children's programming. They found more transfer to "robot tests" from "Spider
World," a LOGO-like graphics mIcroworld, than from either BASIC or Type Attack. Though

the commands are not identical in Spider World and the robot test, the actions of the
commandS and the goals of the task were quite similar. BASIC and Type Attack did not
have this similarity with the robot tests so the lack of transfer in these conditions was not
surprising.

Ail of these studies highlight the need for transfer assessments to be based on detailed
understanding of the skills learned in the training phase and required in the transfer phase.

Claims have been made that students will learn more transferable skills when their learning
is abstract and when the memory load is low. These principles were incorporated into the
debug instruction provided to the students in the dissertation study to maximize their
potentia or learning transferable skills.
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1.3.2. Realizing the dream of transfer from computer programming

NO Well and Stmon (1972) suggested a threefold research agenda for studying human

problem solving that is consistent with the findings reported above: develop a detailed

performance theory, then addresS issues nf learning, and finally address issues of transfer.

Similarly, Anderson (1987) stresses that his design of intelligent computer tutors IS based on

the premise that "one needs to have a cognitive process model of the student if one IS

going to be able to effectively tutor the student." Failure to base both Instruction and
assessment on a performance theory has led to the distressing mixture of resultS in the
LOGO literature. Researchers in the other problem-solving domains are attempting to follow

this agenda and are documenting learning and/or transfer. A search for transfer of skills
from programming experience must follow a clear statement of what these skills are and an
assessment of how well they are acquired during LOGO instruction.

My research agenda, :herefore, Includes three phases:

Detailed production system analysis of debugging skills In the LOGO domain,

Direct instruction of those skills in two domains (to facilitate abstraction) with
external support to reduce the working memory demands, and

Assessment of skill acquisition in the base domain and transfirr todoMairiS
requiring similar skills.

Anderson et al. (1985) have reported positive results from using a similar approach to design

and assess the Impact of computer tutors for teaching both Lisp programming and geometry
skills. In contrast, my approach will focus on designing principled instruction to be used by
a human teacher In a typical classroom.

The rest of this thesis is organized as follows. Chapter 2 describes a detailed task
analysis to model good debugging skill (in the form of a computer simulation) and

summarizes the results of a pilot study designed to establish which of the model's skilla
sth lents learn in a "typical" LOGO course (i.e., with no explicit instruction in debugging).
Chapter 3 describes the experimental design and the model-based Instruction and

attessment techniques. Chapter 4 details the students skill level in one LOGO mini-course

and the savings obsetved when they moved into a second LOGO mini-course. Chapter 5
discusses the transfer of debugging skills from LOGO to non-programming domains. Finally,

Chapter 6 summarizes the findings and suggests ways to strengthen and apply them.
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2. Ana lyking the components of debugging skill

The debugging InStructIon and transfer assessments discussed in this dissertation Were
based on a detailed teak analytit of LOGO debugging skills. The analysis was intended to

capture, In the form of a concrete model, the decition procettes, knowledge, and sub-skills

necessary for efficient debugging of LOGO graphics and list irocessing programs with one or

more semantic and/or Syntactic bug&

The following sections describe the model and its applications for instruction and

assessment. First, Section 2.1 IS a general characterization of the steps in the model's
debugging process. Next, Section 2.2 is a description of the actual production syttem
implementation of the model along with examples of It debugging faulty LOGO programs.
Section 2.3 is a report of a pilot study designed to determine Which components of the,

model studentt learn in a typical LOGO course. The chapter wIll conclude in Section 2.4
with a discussion of designing instruction and aSSOSSment In accordance with the model as
Well at predicting transfer from debugging training in the context of LOGO programming.

2.1 A general model

The attumed debUgging situation is one in which the model has access to the program
plan (the desired outcome), the bUggy prOgram, the output that the buggy program
prOdutes, and knowledge about LOGO. In the following analysis, we diStingUish between
the discrepancy and the bug. The fOrmer refers to the difference between the program plan
and the program output. The latter refers to the erroneous component of the program that
caused the ditorepancy. The goal of the debugging process is to detect and ccierect the
discrepancy-causing bug. For ekaMple, if the goat drawing corresponding to Figure 1a was
a taller flower; then the discrepancy between the goal drawing and the program output
would be dettribed in terms of the difference in size. The bug that caused the

discrepancy would be the 15 in the FD :0 15 command that draws the stem.

According to the model, there are five phases to the debugging process. The first phase
establishes four subgoals that, when completed, reassert the top goal. The five phases are:

1. Program Evaluation. Run the program. Compare the program plan and the
program output. If they do not match perfectly, then identify the bug, represent
the prograM, lOcate the bug, and correct the bug:
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2. Bug identification. Generate a description of the discrepancy between the
program plan and the program output. Based on the discrepancy description,
propose S12fic types of bugs that might be responsible for the discrepancy.
Where Multiple possibilities exist, do further discrepancy description and bug
proposal. When only one possibility remains, examine the program output to
identify the specific bug.

in Its purest form, the discrepancy description makeS no reference to the
fact that the faulty output is program-generatOd. That is, the discrepancies
are characterized entirely in terms of their static features.3 Table 1 lists
the most common types of discrepancy encountered when debugging LOGO
graphics and list-processing programs. The quotations presented in the
second column are representative comments from children in thIS Study
about the type of discrepancy shown in the first column. Note that ono
possible outcome of the bug identification step IS knowing that the plan
and output are not identical but being unable to deacribe the mismatch.
However, in the case of syntax errors, the error message always provides a
description of the discrepancy for the uSer (though the user may Ignore it).

Given the description of the discrepancy, the model makes inferences about
Whlett See Old _pregram components are capable of generating that type of
diterepanCy. The third column in Table 1 suggests some of the possible
mappings. Foe example, if the discrepancy is spread; then It is likely to
be caused by turning the wrong angle or moving the wrong distance; in
addition to proposing these general types of programming errors; the model
has a set of rules which propose further discrepancy description to
discriminate between multiple possibilities. When only one possibility
remains; the model examines the program output to determine the specifie
bug. The model May need to cycle through discrepancy description arid
bug proposal several times before a specific program command IS identified
as the bug (see the fourth column in Table 1). However, the result of this
complex processing is a narrower search fer the bug (e.g., "right here - it
shouldn't be left 90 - It theuld be right 90 I think").

3. Program Representation. Represent the structure of the program to investigate
the probable ideation of the buggy command in the program listing;

KnoW ledge of the program's structure may be the result of having written
the program or of assuming that programs for certain types of plans will
be structured in characteristic ways; For example; the model may be
given knowledge that the program has a repeat structure because the user
wrote the program or because the user observes that a picture is
composed of several identical figures (typically programmed Whig_ a
REPEAT statement). Knowing that the bug is located within a REPEP T

311 Is possible that discrepancy descriptions Might intliide tettiObial inforniatidii, because in our procedure, the
child watches as the program's output is dynamically generated. On the computer we used; Figure la would
take about 5 seconds to draw: AlsO, for list.processing output, the temporal order of different portions of the
output is preserved by the listing on the screen.
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State Merit narrows the search in the program listing. In the case of syntaX
errorsi the error message gives the user information about which proCedUre
contains the bug;

4. Bug Location. Using the cues gathered in the last tWo phaseS, examine the
program in order to locate the alleged bug.

The efficiency of the bug location process dependS on the outcome of the
bug identification and program representation processes. At best, the
model searcheS for a perfectly specified bug (both the buggy command
and its arguments are specified) in a highly constrained set of possible bug
locations. At worst, the model must perform a step-by-step examination of
th6 program because it has no knowledge of the bug's identity and no
cues about its location.

5. Bug Correction. Examine the program plan to determine the appropriate
correction. Replace the bug with the cor7ection in me program listing and then
reevaluate the program.

This reevalutation Is slightly different from the test in that the model
[MOWS a change has just been mado; It first de!ermines whether the
correction fixed the original problem; It the correction worked, the model
Will determine whether there are any more bugs to fix; . otherwise, it will
debtig the correction before proceeding;

Insert Tab! 1 about mei:

2.2 A production system specification

In order to specify the model unambiguously a d to demonstrate Its sufficiency for
debugging LOGO programs, it was implementod In GRAPES, a goal=reStriCted prOduction
system (Sauers and Farrell, 1982). The GRAPES model consists of a set of rules, called
productions, which specify the action to be taken if certain conditions exist. The conditions
include the goal the model Is trying to achieve and the information currently available in

working memory (the set 0f known facts). A production is selected and executed only when
the appropriate conditions exist; thus the current state of the environMent determines which
actions will be performed. The actions include updating or adding to both working memory
and goal memory.

The 84 productions in our GRAPES model represent our task analysis of debugginO SkiliS
in the LOGO context. The model's goals represent the steps in the debugging process; the
heuristics it employs represent general and specific search Strategies used for efficient
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debugging; and the operators it invokes represent sub;skIlis which are essential, but not
central, to the debugging process (e.g., editing skills). The following sections. will describe
these three components of the model in detail. These descriptions will be followed by
demonstrations of how the goals, heuristics, and operators work together to debug faulty

LOGO programs.

2.2.1. Goals direct the solution

The debugging model's goal structure corresponds to the five phases described in the
overview. A goal tree is shown in Figure 3. The system has a set of productions for each
goal to represent the different responses a debugger would have to the earn. goal in

different situations. The "situations" are represented by the current contents of the system's
working memory. Productions with test and evaluate goals start the system and evaluate
the success of each debugging attempt (i.e., the match between the program plan and the
program output). The describe and propose goals correspond to the bug identification
phase; they satisfy the productions that describe the discrepancy between the program plan
and the program's buggy output and that propose possible buial.and ways to discriminate

;
among them. Represent and specify correspond to the tirogram Irepresentation phase;
productions with these goals look for structural cues to the bug's locatIon so that find,
interpret, and check can actually isolate the bug using whatever cues they have about the
bug's identity and location. Finally, the change and replace goals correspond to the bug
correction phase; they fire productions that identify the appropriate correction and change
the program listing accordingly. The full production system is presented in Appendix I.

Insert Figure 3 about here

2.2.2. Heuristics narrow the search

The system has two sets of debugging heuristics, one set for identifying the bug and one
set for representing the location of the bug in the program. Using both sets of heuristics
narrows the search for the bug substantially. Heuristics for identifying the bug correspond
to the mappings between observed discrepancies and potential bugs (listed in Table 1).

These heuristics are moSt useful when there is more than one type of bug which can lead
to a particular type of discrepancy. In this case the heuristic includes information for

distinguishing between them. For example, if the discrepancy has been Initially identified as
spread, then the model will request information about orientation because it has the
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knowitIdge that dlacrepancles described as both spread and orientation must have been

caused by an angle bug whereas those described Only at tpreed dltdrepancies must have

been caused by a distance bug;

Heuristics for locating the bug involve knowledge of program structure types. For

example, if the program is identified as having subprogram structure, the model would aSk

for Information about which subprogram was likely to contain the error and It would confine

its search to that subprogram unless no bug could be located there. If no subprogram cue

it available, the model will seek other structural cues, such as location within a REPEAT or
IF statement or location after a particular command. For example, if the user can Identify
a correct command which was executed before the bug occurred, the model Will Lite that
command as a marker and begin its search after that command.

2.2.3; Operators process information and produce behavior

According to our model, the debugging process uses 11 operators; or sub-skills; to
process information available to the system. These operatOrS areca iWd by PrOduttlens
when It Is necessary to process Information from one or more source'," ' or to take specific
actions; Four sources of information are available tO the Operatert at all . times: the

program plan, the program output, the program listing; and knowledge of the programming
language. In addition, an operator may use local Information contained in a working
memory element; Operators may also add information to working MeMory.

There are two classes of operators: a) those that correspond to inspection of the buggy
output and/or the plan, and b) those that correspond to manelivering in the LOGO
environrrient. The latter set of operators are automatically executed by the model, but the
former set are not. Instead, their operation is simulated by the user of the system.
Essentially, the user compares the buggy output and the program plan for the SyStern,
inputting judgMents of whether a program did what It should have, estimating angles and
distances; reading error messages from the LOGO Screen. etc.

A brief deSeriptiOn of each operator follows. Working memory elements are presented In
parentheses and italics are used for variables representing the system user's input. For
example, the working memory element (discrepancy reSponSe yes) might actually be

instantiated aS (discrepancy orientation yes).

26



Tranefer of Debugging Skill

The MATCH operator is called to process information from the program plan and
the program output and input its judgment about the match between the two.
The Wein questions the user, "Did the outcome match the plan?," or "Did the
Simulation match the plan?," and expects a yes or no response. A yes
response causes the element (match yeS) to enter working memory; likewise, a
no response yields the element (match no). If a command has just been
changed, the system's query is, "Did the correction fix the problem?" and the
resulting working memory element is (fix yes) or (fix no).

CONTRAST Is a discrepancy-description operator that processes Information from
the program plan and the program output. The system first asks about the type
of discrepancy (graphics or lists, semantics or syntax). Then it aSks a more
focused question about the particular discrepancy and gives a list of possibilities.
For example, the system asks, "What Is the discrepancy between the plan and
outcome?" and requests one of the following answers: orientation, size, spread,
location, extent, or ? for graphic semantic discrepancies. A working memory
element of the form (discrepancy response yes) is then added to working
memory. CONTRAST can also Indicate whether a specified discrepancy exists or
not. If a working memory element such a3 (description must be about size)
exists, then the system's query is, "Is size discrepant?" A yes or no response
is expected and the resulting working memory element is of the form
(discrepancy size response).

EXAMINE is a bug proposal operator which seeks specific information about the
bug using LOGO knowledge to guide the processing ot..-Informatioes from the
program outcome. The system asks the user a question ittcfr sw.".Iftfhat is the
discrepant angle on the outcome?" and labels the user's reowaIWINIAnTi bug,
(the bug could be (RT (120))) for example,

INTERPRET is a bug location operator which simulates the effect ot-the current
command using LOGO knowledge. The system reminds the user of the function
of a command, then asks whether that was the appropriate command to use,
then asks whether each of the arguments is correct. These questions are calls
to the MATCH operator described above.

GENERATE is a bug correction operator which uses LOGO knowledge to
determine what command would be necessary to accomplish the desired effect.
The system asks the user, "What should the command bug have been?," or
"What command should be inserted?." and creates a new working memory
element from the user's response, (the correction is (RT 90)) for example.

The other six operators, basically editing operators. are associated with physical
action in the LOGO environment. The model automatically carries out these
operations on Its representation of the LOGO environment, while notifing the user
that it is doing so. These operators include RUNning the program, ENTERing
the editor to view the program listing, SKIPping to a particular location in the
program listing, READing a command. DELETing a command, and INSERTing a
command.
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2.2.4. Modeling solution strategies

The model's solution to a debugging problem depends on the amount of information

gathered about the debugging situation to guide the search for the bug and the accuracy of

the input resulting from the user-simulated operators. In this section, we contrast two
debugging examples with different amounts of knowledge. The more knoWledge input to the

model, the narrower the search for the bug. Appendix II provides additional examples to
ShoW how the model recovers from being given incorrect input and to demonstrate its

flexibility in dealing with a wide variety of debugging situations.

This example is extracted from one of the actual graphict debugging tests used in the
dissertation study. The desired outcome was for LOGO to draw a corn field (Figure 4a).

The program's outcome was, however, discrepant from the plan (Figure 4b) because there
was a bug In the program. The relevant portion of the test program IS ahoWn in Figure 4c.
The tWo traces discussed In this section (Tables 2 and 3) differ in the amounit of

information about the bug's identity and location. The goal numberS in the discussion refer
to these traces.

----N.- ...... -N..-- ........ N....
Insert Figure 4 about here

In the first trace (Table 2); we simulate a situation In which the debUgger IS a Very
knowledgeable user. The model is provided with a lot of Information about both the

discrepancy and the program. The information, provided In tett:Witt, to the operators, Is

Marked by --> on the right-hand side of the trace. Here the user classifies the problem as

graphics without an error message (goal-2) and then identifies the discrepancy type as
"wrongpan" (goal-6) since the outcome has four ears of corn inttead Of four stalks. The

mOdel then proposes that the wrong subprogram has been called (goal-7). It asks the user
the name of the wrong subprogram. The user responds that it is called CORN; This

user's clever discrepancy description led to a very specific propOSal of the bUg: other

deScriptiOns, e.g. "missingpart", would have worked also. though perhaps not as efficiently.

When prompted about the subprogram structure of the program, the uSer reSpondS With a
? (goal=3), indicating uncertainty about the structure and about whether the bug is in a

substructure. The user then indicates that the bug is probably in a REPEAT statement
(goals 8-9) since there are four identical figures. Kno Wing that the bUg it in a REPEAT
statement plus that it is probably a wrong subprogram call to CORN allows the model to
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find the bUg directly (goal3). The model aska the user whether CORN should be changed,

deleted, or have another command inserted before it (god1-5). The titer indldates that a
change Is necesSery 30 the model requests the user to input the correction (goal=11). It

makes the correctiOn and then instructs the user to rerun the program to check the
correction (goals 12-14), The correction is aCCUrate So the model aske Whether there are

any more problems (goal-15). Since there are not, debugging is complete. Figure 5 showe

the goal tree generated during thie debugging cycle.

--N.- .............. ........ -N.-
Insert Table 2 about here

Insert Figure 5 about here

The second trace, in Table 3, Illustrates the model'e behavior when the user knows
nothing about the discrepancy between the plan and the outcome and nOthing AMR the
structure of the program. The user runs the program and knows that a discrepancy exists
(top-goal); When asked about the type of discrepancy, the user knowa.that It le a graphics
prObleM Without an error message (goal-2); The user rewandsria thew.3pacIfIc type of
graphics discrepancy with a ? so the model cannot propose ths.bug's identity (goala.6-7);

When asked about the program's structure; the user again answirs. with. 0-. ? tit* ihckte
tries to get InfOrMatiOn about REPEAT and IF statements and other commands that mtght
be useful as markers (goals 3,8-10). Again the user responds negatively so the model must
Searth fOr the bug by iterating th.rough the program listing (goals 4,11-28). For each
command, the model defines the command and asks the user whether It was the
appropriate command to use: Then it asks the user to check each argument. The nest

command in the REPEAT statement is then determined by the user to be the bug (goal-29).
The model asks whether a change, a deletion, or an insertion would be appropriate and the
user decides to make a change (goal-5). The model requests a correction Which, once it it
input by the uSer, will be substituted Into the program listing in the place of the bug (goals
30-31); Finally; the model directs the user to rerun the program to be sure the correction
was accurate (goals 32-33). Since it was and no other discrepancies existed (goals 34=35),

the debugging episode was complete.

Insert Table 3 about here
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Figure 6 compares schematic versions of the goal trees for the two traces. The contrasts

between the model's behavior in the high- and low-Information tituationS are .striking: the

former required only 17 production firings, while the latter required 52. With respect to the
complexity of the sub-goal tree, shown in Figure 6, we see the same kind of difference: 16

sub-goals vs 35. The high-Information Simulation representS the idol& auto in Which the bug

is completely specified and Its location is known. The system's goals and heuristics were

uSed efficiently to narrow the search for the bug. In the low-Information situation, little use

is made of the describe, propose, represent, and specify goals so none of the heurlSticS for

narrowing the debugger's search are used and debugging proceeds by brute force, one
command at a time. Most of the extra production firings and sub-goalt rattail from this
serial search.

Insert Figure 6 about here

For the purpose of this simulation, we chose an example where the bug WaS close RI the

degInhlho Of the program and assumed that the interpret operator correctly Identified the
bug; if this had not been the case, the difference between the.i.tv40. trateS WOuld have

been eVen more striking because longer and/or repeated debugging-.cyctoravould have been

necessary. Interested readers Should peruse the traces in Arnataidix, II icy ger turnore:41-obal

picture of how the model works;
.

2.3 Students' limited debugging skills

A pilot study (Carver and Klahr, 1986) used the formai task analysis of debugging as a
context for assesSing how much of the debugging skill specified by the model children
actually learn in a guided discovery LOGO graphics environment. A guided ditcovery
enVironMent is one in which the instructor introduces new LOGO concepts and may give

project ideas for trying them, but then the students are free to create projects of their own
choice. The course was designed to assess the acquisition of both debugging skillS, the

model's goals, heuristics, and debugging operators (MATCH, CONTRAST, and EXAMINE).

and conventionw LOGO sub-skills (the model's general operatort). Debugging skills were
evaluated at three times during the LOGO course by asking students to describe the

probleni With the output of several programs and then asking them to view and debug the
programs. Wo assessed the other operators assumed by the model at three times also.
The ability to INTERPRET commands to predict the behavior they wthild caUte Wat
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attaessed using a paper and pencil task; students-) Were given programs and asked to draw

their outcomes. We used a turtle target game to assess students' ability to GENERATE
commanda to cause specific behavior: students had to give the turtle one turn command
and one move command to make it reach a target. The ability to maneuVer Within the

LOGO programming environment (RUN, ENTER, SKIP, READ, DELETE, and INSERT) was

tested using a program editing task; students were given a hard-copy of a program with

changes marked on it and they were asked to do the editing.

Nine children (5 females and 4 males) ranging in age from 7;1 to 8;9 participated in the
study. They were recruited 'from the communities surrounding Carnegle-Melion University by

advertising a free LOGO course. None of the children knew any computer programming

languages, but most of them had limited experience either with computer games or With
programmed instruction. Eight of the subjects came in pairs and one came individually to
12 two-hour LOGO classes over a three week period during the Summer. All lessons were
taught by a 24-year-old experimenter who was an experienced LOGO instructor. The

instruction used an APPLElie computer with Terrapin LOGO. Skills in command

interpretation, command generation, maneuvering within the LOGO environment, and

&bugging were tested three times during the course.

After 24 hours of LOGO experience, which is as much or more experience than WaS
provided In 9 of the 10 studies mentioned in Chapter 1 (Clements, 1985), our subjects had
not developed effective debugging strategies. In fact, they rarely debUgged programt When
they were not required to do so; Figure 3 depicts the general results in terms of the
proposed debugging model: the bdxes around the goal names indicate the parts of the
model with which the children had difficulty. In the test phase. children Were able to
MATCH the goal drawing and the program output to determine whether or not they were the
same. However, they may have found debugging tedious because, according to our model.

they lacked knowledge of the discrepancy-bug mappings and heuristics for locating the bug
in the program listing. When forced to comment on the nature of the problem, they

demonstrated limited ability to describe the discrepancy. Alto, their propose phase was not
useful because of their inability to discriminate between potential bugs and their poor

EXAMINE operator. In addition to this restriction on debugging, the children had few cues

to represent the program (since they had not written it). Even when clues had been
mentioned, they were seldom used to narrow the search for the bUg, SO children had to
find and change the bug using step-by-step examination of the program. Despite good
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skills In maneuvering within the LOGO environment (RUN, ENTER, SKIP, etc.), the serial
search was tedious because of the children's poorly developed Skill§ et INTERPRETIng

commands. However, children were generally good at GENERATing the command to correct
the bug once It had been located. Though the children in Carver and Klahr's pilot study

did learn some LOGO skills, they did not learn the goal Structure, the heuriStics, or the key

operators that the model uses for effective debugging. Also, In their own debugging, they

tended to Skip the phases before looking at the program so they were usually left to serial
search when they debugged at all.

The debugging model assumes that the child hae already made the decision to debug a

program, rather than to simply abewlon it and start over. However, Carver and, Klahr's
(1986) pilot study as well as many educatort' Informal observation (Papal, 1980) is that
children prefer to restart rather than to debug. We believe that in most cases children
don't debug becauge they don't know how to. There are three reasons why they fall to
acquire this skill: a) Debugging is a complex skill; b) It requires extra memory capacity;
and c) it IS rarely taught directly. Below, we elaborate each of these stumbling blocks In
relation to the model and to the relevant literature.

2.3.1. Debugging is a complex skill

Debugging's complexity is obvious from the large number Of goaltr; 'hairs** and
operators necessary to describe our model; The bug identification and bug.: location
productions represent a minimal Set of hourittitt for finding bugs; v+Ithout these search
shortcuts, the model's debugging is laborious. Well-developed operators are essential for
accurately comparing the actual output with the goal output and for interacting with the

LOGO system; without such operators, the model makes frequent errors and requires many
cycles to correctly debug a program;

Research on adult programming skiliS has Shown Similar difficulties among novices.

Studies with adults have shown that novice programmers fail to use the goal structure of a
program as an aid tO bug isolation. For example. Jeffries' (1982) study of expert and
novice Pascal programmers showed that growing eXpertiSe Inv-dived developing a hierarchical
representation of programs; (She also found that experts had accummulated a Set of

familiar OatternS that they used to relate flaws in the output to potential bugs; Our model
represents such knowledge in the propoae prodUttiOnt.) Spohrer, Soloway, and Pope (1985)

make the interesting suggestion that failure to maintain the appropriate goal hierarchy ("goal
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dittititit" and "MergsA goals") is a common source of bugs. Atwood and Ramsey (1978)
found that debugging was difficult for adult novice FORTRAN programmers .because they

lticktd Utertil hturlstUct for seeking Cues from faulty output which could narrow their search
for the bug.

Also, Littman (1986) has shown that even expert programmers do not use an effective

search-narrowing strategy ("as-needed," in Littman's terms) when attempting to modify large

programs. Rather, the experts who used a brute force strategy ("systematic," in Littman'S

terms) Succeeded more often than those using the as-needed strategy. The success of the
systematic strategy depends heavily on a good interpret operator and a program of
manageable size. Good is-needed strategies, similar to the cue-directed search the

debugging model uses, would be necessary for large software projects. However, the
experts who did use the as-needed search in Littman's study did not demonstrate good
strategies; they had difficulty determining what was "needed."

AlthOUgh gOal structures play an Important role In adult programming; a hlerarchLal
conceptualization of the solution to a programming problem is very rare at the low level of
prOgramming skill typically reached by children; which is perhaps why-411w, do poorly. For

example, in Pea's (1983) study, children were able to debug syntax enors-offectively but
were not able to locate semantic bugs such as misordered commandS. Part of their
dIffICUlty Wet a result of their tendency to approach programs as long chains of direct
commands rather than as hierarchical structures. Nevertheless, because we wanted our
model to represent an efficient debug;-.ar, we did Include the capacity tO effectIVely use

knowledge about the goal structure of the buggy program (in addition to a last-resort brute
force strategy) if the responses to the represent operators Indicate that the program has
a Spedifid structure and that the bug appears to be local to a particular component of that
structure, then the model immediately constrains its search to that location.

2.3.2. Debugging skills require extra capacity

Development and use Of debugging skills requires memory capacity sufficient to keep track
of available cues; Even though most of the productions in our model reqUire Only IWO or
three lilt:irking memory elements as conditions; this is more than novices can handle in

addition to the already heavy memory load imposed by learning to program. Also, the

context in which students typically experience a need for debugging is one in which their
attention is directed toward the problem at hand: getting the program right. ThIS focUt
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leaves them little capacity to learn about the debugging process itself. According to
Kotovsky et al. (1985), this minimal available capacity would result In minimal learning and

therefore minimal transfer. Anderson and Jeffries (1985) suggeSt that many of the effort

adult novices make In computer programming were the result of working memory failure.
Children may be even more susceptible to this difficulty.

In fact, Pea and Kurland (1984) suggest a a multi-stage characterization of the acquisition

Of programming Skills that emphasizes the capacity Issue. The beginner is simply a "code
generator" who focuses on individual commands rather than developing a Strikt Wed
program. Next, the student begins to think in terms of higher level units, becoming a
"program generator" who can create and debug complex programs. Finally, the student
beteMet Sufficiently familiar with the language that he can distance himself from the coding
processes to consider the general problem-solving aspects of programming such as

elegance, efficiency, and optimization; he has become a "software developer." Only at this
level can he deal With high=leVel thinking skills to the extent that transfer would be possible:
Much evidence suggests that even after 20 to 30 hours of instruction, matt children are
barely out Of the first stage (Carver and Klahr, 1986; Pea and Kndasse1983; Mawby. 1984);
they are still struggling to acquire the basie LOGO operators. 11140;:..Wliksei(1986) showed

that &On a email sample of LOGO teachers failed to debug complex LOGO prwrams.

Focusing on the complexity of debugging and the need for extra capacity to learn it has

shaped the agenda for research on novice programming. Most researchers study novice
difficulties so that instruction can be imprcved and students can reach the high-level skills
more quickly. Mayer (1981) viewed the novice's problem as one Of cOndept

meaninglesSneSS, SO he Studied techniques for making computer concepts more meaningful.
Also, Spohrer and Soloway (1986) have been developing a process model of novice bug
generation. Pea and Kurland (1983), McBride (1985), and Mawby (1984) have already beeri
mentioned as examples of research on children's poor understanding of high-level
programming concepts. The focus of our Model has been on identifying good strategies so
that the goals for instruction and assessment will be clear.
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2.3.3. Debugging is not directly taught

Although debugging is a complex cognitive skyl whose acquisition requires substantial

cognitive capacity, It may not be difficult to learn. The important question of whether or not

children can be dirbctly taught to debug programs is completely open because debugging is

rarely an explicit part of a LOGO curricutum. That IS, although children in a typical LOGO

course may get exposed to debugging in the process of getting their programs to work,

they do not get explicit instruction In detecting discrepancies, inferring error sources from

discrepancy descriptions, and so on.

Gugerty and Olson (1986) reported that in a debugging situation expert programmers are

better able to comprehend code and generate high quality hypotheses about possible bugs

than are novices. They suggest that these skills must develop as a result of experience
since debugging requires tremendous knowledge. They imply that being a good programmer
is a prerequisite for being a good debugger.

However, Kessler (1986) has shown that it Is possible for LISP, students to learn to debug

simple functions before having experience writing them. It may bsi-posellfto then, to teach
a

good debugging skills to novice programmers so that the frequent bumr, IhwmpilM will not
be such a stumbling block to their learning process.

2.4 Applications of the model

By doing a detailed task analysis of debugging skills, we have been ftle to specify the
component processes, heuristics, and sub-skills that programmers must learn In order to
debug well. We have also established that students do not learn the central components of
the model spontaneously. Similar difficulties with debugging have also been demonstrated in
the adult programming literature. The usefulness of the model does not end with

characterizing difficulties, however. Our performance theory can be used as the basis for

designing curriculum to teach components of the debugging model as well as for designing

transfer tests and measures on which acquisition of the model's skills will be demonstrated.

2.4.1. Designing instruction

The objective of debugging instruction is to train students to use the model's debugging
procedure, especially the initial phases where cues to the bug's identity and the program
structure are gathered to narrow the search for the bug. The model's goal structure could
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be Introduced as a step-by-step procedure, after a little rewording for elementary Studente.

Similarly, Student* could be taught to ask themselves the same questions the model asks

the user. Th specific heuristics the model uses to map diScrepancies onto likely bugs and

to focus search on particular parts of the program could be taught to students directly.
Such instruction would decompose the complex debugging task into simple steps

comprehensible by novice programmers.

in addition to teaching the content of the model, instruction must take the students'
memory capacity into accoum Providing memory aids such as posters with commandS,

debugging steps, and discrepancy-bug mappings would help to reduce the memory load to a

manageable amount;

2.4.2. Predicting and assessing transfer

Given that students can, in fact, learn the debugging skills we have modeled, they should
be able to use them In other contexts In which they are recognizably appropriate. Students

who learn debugging in the context of a LOGO graphics course would be likely to recognize

LOGO list=procossing as a domain where their debugging skills wirruid.bio useful, and vice
versa. Our model shows that the goal structure is identical for debugging graphics and list-
proceSting programs, as are several of the discrepancy-bug mappings (wrongpart, extrapart,

missingpart, howto, whatto, and novaiue In our model) and the program structure cues. in

addition, the sub-skills required by the debugging process are similar in thete tWo LOGO
domains.

More generally, the debugging skills students learn in the context of LOGO programming

could be recognizably useful in non-programming tasks, particularly those requiring extensive
search. In a non-programming domain, the sub-skills and specific discrepancy-bug mappings

are not likely to be similar to those used in programming. However, the five pnase goal
structure would be SIMIlar to other debugging situations as long as the desired outcome,
buggy directions, and buggy outcome are available to the solver. Also, If the buggy
directiOriS are structured in ways similar to LOGO programs. :hen the program structure cues
should also be similar. The transfer tests used for the research discussed in this

dissertation were designed with these criteria for similarity in mind.

The measUreS used to assess debugging skill were also based on the model. When
using the model, greater knowledge input results in narrower search (fewer goals);
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developing debugging skill should therefore result in decreased debugging time. If all the
knowledge input to the model is accurate, the bug can be located and corrected all in one

cycle through the model (from the initial goal to test the program to the flnal retest goal).

Developing accuracy in debugging should therefore result In fewer debugging cycles needed

to locate and correct bugs. These measures of speed and efficiency, along with some

qualitative characterizations of debugging strategies, will be the core of our transfer analysis.

The details of the model-based instruction and assessment will be described In Chapter 3.

The primary goal .of the Investigation was to assess the extent to which students trained to

debug one type of LOGO programs could transfer their skills to a second type of LOGO
programs and to debugging of non-computer directions.
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3. Designing model-based instruction and assessment

The formal task analysis Of LOGO debugging skills pretented In Chapter 2 provides a

basis for detailed instruction and assessment of those skills. This experiment was deSIgned

to address several issues. The first goal was to discover whether students can learn the

debugging skills used by the model when those skills are taught directly. The second goal

was to demonstrate that debugging skills, once learned, are transferable to tasks requiring
Similar skills. These Issues were addreited In the context of a 50 hour LOGO graphics and
list-processing course taught to 22 8- to 11-year-old children in a Montessori School over a 6
month period. This chapter will discuss the experimental design, the relevant methodological

issues, the instructional techniques, and finally the aSSOSSment techniques.

3.1 A combination of transfer designs

The design of this study Is a combination of two common transfer deSignS. A Savings
design was used to assess the learning of programming, debugging, and editing skills In

one LOGO mini-course (graphics or list-processing) and the tranSW' of those skills to the
other mini-course. A pre-test/post-test design was used to assests the-transfer of debugging

,

skill learned in a LOGO environment tO nori=Computer debugginteMW

3.1.1. A pre-test/post-test design

A typical pre-test/post-test design includes a within=tUbjectS comparraorr- ois performance
before and atter some treatment and a between-subjects comparison of one of Mora
treatment groups with a control group. (See Figure 7a.) Thls type of design is useful
when several versions of the target test are available So that verSieris can be

cOunterbalanced with test time. Researchers using this design to Investigate transfer
generally try to show that the treatMent group's performance on the target task changed
while the control group's dld not: they would then attribute the differential change to transfer
from the source domain. Figure 7b shows the predicted results for a case in which

improvement means an increase in Some performance measure, such as the number of
correct responses; the graph could be turned upside down to Show the effect for cates in
which improvement yields a decrease in the measure (e.g.; solution time). Ali of the LOGO
transfer studies described ih Charm& 1 batioally haVe this design; though some (Daibey and
Linn; 1984; Gorman and Bourne, 1983: Degeiman, 1986; BrOwn and Rood; 1984; Clements
and Gullo, 1984; and Clements; 1985) lack a pre-test, or a control group, or bOth.
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Insert Figure 7 about here
46.0.011...EmMPIEM*

ThIS Study Includes a within-subjects pre-test/post-test comparison of performance on a
non-computer debugging task. (See Figure 7c.) A mid-test WEIS WS° included to monitor

transfer between mlni-courses. At each of the three test times, each student took three
types of tests (1, 2, and 3 in Figure 7c), all of which Involved debugging a written set of
instructions about how to achieve a well-specIfied goaL There were three versions of each
type of teat to that the tests could be counterbalanced with test time. In other words, one-
third of the students took each version at each test time (a, b, or c in Figure 7c). The

hypotheSIS Wet that students' ability to debug these non-computer tasks will improve as a
result of learning debugging in LOGO

Several types Of control groups could have been used In thls study; however, no control
group was Included for the following reasons. One alternative hypothesis Is that students
would Improve on the post-test purely as a result of their natural development over the time
span of the LOGO course. The control fee the effect Of maturat le built Into the
treatment group since the age range of the students is 3 years whale., tlwr faM1 of the stUdy
is only 6 months. In other words, if developmental change over the 84ntr study caused
the change, then the older students should be better on the pre4est Man the younger
students ate oh either the pre-, mid-, or post-tests; (See Figure 8a.)

Insert Figure 8 about here

Another alternative hypothesis is that the improvement on the pott=tett is due merely to
learning how to do that type of test. This hypothesis can be tested without a conAtl group
by comparing the improvement on tests given within one session to the Improvement

between sessions; Figure 8b shows the contrasting effects. If the imprOvetrients ten be
explained simply t4t familiarity with the tests, then the improvements from one test to the
next should Le constant. However, a pure transfer effect would yield improvements only
betWeen sessions (between tests 3 and 4 and between tests 6 and 7).

Having a control group with students in an identical LOGO course without the debugging
instruction would be appropriate for showing that the instruction is necessary for teaming to
occur and that without learning no transfer occurs. Such a group was not Included in thls
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study because the pilot study (described in Chapter 2) already showed that studente in k

LOGO graphics course did not learn effective debugolng skiiis without instruction; therefore,
no transfer could be expected. Unfortunately, the transfer MUT; were not used in the pilot

Study So the tle between the lack of learning and the lack of transfer cannot be shown
directly. However, some suggeStiVe evidence from thit Study and several concurrent studies

will be discussed In Chapter 7.

3.1.2. A savings design

A savings design le useful for testing transfer to target domains where multiple versions of

the test are not available, as in many problem-soh/Iry and skill acquisition domains; in the
simplest case; the design Involves a between-subjects comparison of two groUpt. One

group dale task A and then task B; the other group does the two tasks in the reverse
order; (See Figure 9a.) Transfer is then measured as the SaVings the group doing each
tatk second experienced; compared to the group doing that task first, as a result of

experience with the other task. For measures such as time or the number of errors;

savings would be reflected by a decrease in the performance measure. For example, In
Figure 9b, better performance of group I than group 2 on tasinFulotiki be attributed to :
transfer from task A. Better performance of group 2 than group kia; losk A would be
attribUted te transfer from task B. For other performance measures, suarks kccuracy:

amount accomplished, savings actually yields an Increase in the performance measure; Also;

the actual relationship between the lines would have tO be predicted bated en the relative
difficulty Of the tasks and the expected amount of transfer: in some cases, there may be
more asymmetry than is depicted here. Thit design has not been used In the LOGO
literature so far but has been used frequently in other transfer studies; for instance, Srilith

(1986) showed savings of total time for solving Tower of Hanoi isomorphs, and Singley and
Anderson (1985) reported savings of total time, number of keyttrokes, residual errors, and
SeCOnds per keystroke for learning a second text-editing system.

Insert Figure 9 about here

In this study, there were two groups of subjects. Beth groups received the same LOGO
instruction including explicit instruction In debugging. However, one group began with
graphics and then moved into list-propessing; while the other group took the twO mini=

courses in the reverse order. (See Figure 9c.) Performance on programming; debugging.
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and editing (a, b, and c in Figure 9c) was measured at three times during each mini-course

(1, 2, and 3 for graphics and 4, 5, and 6 for list-processing in Figure 9c), so,students took

a total of 6 prOgramming, 6 debugging, and 6 editing tests. Tests were not

counterbalanced with test time since they corresponded to the concepts being learned at

that period in the course. Better performance on graphics tests by students taking graphics

second than by students taking graphics first can be attributed to transfer from their list-

processing mini-course. Likewise, better performance on list-processing tests by students
taking that second than by students taking it first can be attributed to transfer from their
graphics mini-course.

Figure 10 shows the combined design. Students took one version of each type of transfer

test at each of three times: before the first mini-course began, between the mini-courses,

and after the second mini-course ended. Performance at the three test times will be

compared to show whether the debugging skills students learn from the LOGO courses
transfer to debugging non-computer directions. All of the students received the same LOGO
treatment including explicit instruction in debugging; however, students took the two mini-

I.

courses in different orders. During each mini-course, leaminivi prommming, debugging,.
and editing skills was monitored at three times. Performalacer at thelear.groups on the
same tests could then be compated to show whether the Skiet.. transfered4sear one mini-

course to the other and whether this transfer was equal or asyrnrnelif..

Insert Figure 10 about here
!;:

The following sections will describe various parts of this design in more detail: subjects.

instructional methods and curriculum, data collection issues, and E.ssessrnent procedures and

materials.

3.2 The classroom and the classes

The LOGO mini-courses were taught at the Montessori Center Academy in Glenshaw,

Pennsylvania during the 1985-1986 school year. The experimenter, who was already an
experienced LOGO teacher, served as the instructor. The school had 3 computers prior to
the experiment (one in each of the elementary classrooms and one used by the

headmistress), but there was no computer instruclion in the curriculum. In fact, the

computers were used only rarely, and then for programmed instructon and computer games.
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All instruction took place in a dedicated computer room. The clattroom had two Apple lic
computers With Apple LOGO II. Students came to computer classes in six groups of four
and worked in pairs. Groupe Were attigned by the Students' regular teacher; she was given
only the specification that the groups should be as mixed as possible (boys and girls,
younger and older students) so that any differences between the groups would be

attributable to the treatment rather than the age or sex distribution. Three of the groups
took the graphics mini-course first and then the list-proceSsing mini=courte; the other three

groups did the reverse. Each group had two one-hour LOGO classes per week for 25
weeks.

All Of the 3ed 6th geade Children at the Montessori Center Academy participated in the
experiment4 Twenty-two children (8 females and 14 males) tatiging in ago from 8;2 to 118
successfUlly Completed both LOGO mini-courses. Two of the original 24 children did not
complete the course; one student left the SChOdi and One thOved down to 2nd grade. They

were replaced by two other children who moved up from 2nd grade; however, the data frOtti
these four students are not included in the analysis. Table 4 lists the subjects, their ages,
their grades in school, their standardized achievement scores, whether. they had a Conti:tilt&
at home, and whether they took graphics or list-processing first Groboak tonk graphics first
and then list-processing; Group B took the Mini:0101es in the reverse--itramerages.;:-:
fdt each group show that Group A Is slightly younger than Group B bur porfOrmed -btet olr-
the standardized testa.

Insert Table 4 about here

3.3 Instruction techniques

Instruction consisted of 2 LOGO miril;couttet, One to teach graphics and one to teach list-
processing. Students received 50 hours of instruction. The first mini=c0Litte Wet 27 hours
and the second Wee 23 hours; the difference was due to the absence of introductory
computer familiarization and faster progrete during second minl-course. In addition to

lettont about the programming language, students also received lessone deSigned 10 teach
the model's debugging Skilig ditectly. These lessons involved specific instruction about the

model's goal structure, discrepancy=bug mappingt, and location clues.

The Montessori philosophyemphasizes multi-level classrooms: at this particular school, the 3rd-6th grades
were combined into a claSS With One tea-cher.
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Ski IIS in programming, debugging, and editing ware tested at three times during each mini-

course. Each subject took a total of 6 series of tests. In addition, each Sub Oct Wei gi...on

a pre-test, a mid-test (between the two mini-courses), and a post-test to determine their

ability to debug non-computer directions (Such as directions to set a table or distribute
wages).

3.3.1. LOGO Skint

Tables 5 and 6 show the sequence of instruction and LOGO skill tests for graphicS and
liSt-processing. The exact timing of the lessons varied since the second mini-course was
shorter; however, the order was consistent. Spaces in the second mini=course column
indicate lessons which were skipped or were Incorporated into other lessons as extra time
permitted.

Insert Table 5 abOut here

The graphics mini-course began with an introduction to interactiviC.u.se of LOGO with the
basic commands to move and turn the turtle, manipulate the turtWa-p-Wrv etc. Students

were then introduced to procedures for writing and editing progrecms. liurtmrtesson 5 (3 for
the second mini-course), students learned abOUt the REPEAT tOrrimand- and its usefulness

for making regular shapes and curves; in the 14th hour (11th for the second group),
students were introduced to local variables. During lesson 21 (16 for group B), students

were taught how to write recursive procedures and use conditional stop statementS.

Insert Table 6 about here

The list-processing mini-course also began with an introduction to the Interactive use of the
basic command, the PRINT statement. Students learned the distinction betWeeti Wordt and
lists and the punctuation necessary for each. This introductory material was followed by
instruction in writing and editing programs. During letton 3 (1 for the second group),
students were introduced to the MAKI! command for setting glObal variables and to

conditional equality statements. In the 14th hour (12th in the second mini-course), students
were introduced to recursion, the FIRST and BUTFIRST commands, conditional stop

statements, and counters; During lesson 21 (16 for group A), students were taught about
generating random numbers and choosing random items from a word or list.
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All lessons were taught in a guided discovery manner and included time for self-initiated
projects. The intervention of the teacher in the students' work was kept to a %minimum, but

new commands and ideas were introduced in a structured way and beginning activities for
using them were initiated by the teacher. Since the memory load of early programming is

high, reminders of all commands and concepts were posted on a large bulletin board which

could be viewed eaSily by the students. Also, an angle wheel was provided to aid in

calculating relattve angles and a coordinate chart was provided to aid in position and
distance estimation. To further decrease the difficulty of graphics programming, students

were taught computation heuristics such as angle addition and the use of symmetry.

In addition to the LOGO content in the mini-courses, students were strongly encouraged to
use subprogram structure in their programs. Subprograms were introductd In lesson 6 (4
for the second group), before the first skill test sequence. An entire lesson on the benefitS
of using subprograms (decomposition, reusability, and compartmentalization) was presented in
the lesson immediately after the first programming test.

3.3.2. Debugging skills

The "cognitive objective" (Greeno, 1976) of the debugging curriculum was to get students
to acquire the same goal structure as the model. We hoped to train students to look for
and to use cues for identifying, locating, and correcting bugs so that they could avoid the
frustration of serial search. With only slight rewording of the goal structure shown in Figure
3, particularly the interactive prompts the model gives the user, we were able to produce a
step-by step debugging procedure to teach the students. Figure 11 shows the debugging
procedure students were taught in terms of the flow diagram of the GRAPES model to
highlight the similarity between the model and the instruction. Debugging skills were

introduced explicitly after the first debugging test (6-8 hours into the course). This timing,
directly after students had experienced the difficulty of debugging, insured their

understanding of the great usefulness of the skills being taught. After the step-by step
debugging procedure was introduced, the students used the debugging stew to correct: the
same program they had tried to debug the day before.

Insert Figure 11 about here

Beginning during this lesson and continuing throughout the course, the class accumulated
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a list of discrepancy-bug mappings and useful location clues. Theee diacrepancy-bug

mappings are equivalent to the knowledge in the propose productions and the -location clues

are equivalent to the knowledge in the repreSent and Specify productiont.

During thls initial lesson, and any other time the students needed help debugging, the

teacher used the following 4-step sequence of approaches to prompt students developing

knowledge and skills: query, coaching, reflection, and recording.

The initial query approach was designed to help StudentS to consider avallabile cues for
identifying and locating the bug. For teaching discrepancy-bug mappings, questions focuSed

on the difference between the output and What Wet attired, what command(s) generally

cause that type of difference, and in cases when there was more than one poSsibility, hoW
to distinguiSh between them. Linn and Fisher (1983) suggested a similar approach to
emphasizing debugging that consisted of requiring studentS to propote at least two

hypotheses about the identit? of the bug before looking into the program. For teaching
structural cue use, the questions focused on knoWledge about how the program was set up
and where the buggy command might be in the program (near.!AWM other command?,
before/atter what other command?, in a REPEAT statemenenortAn::.se subprogram?).
Coaching was used essentially as a memory aid folloWing tr..quary,..process; it merely
contisted of reminding the students of the clues they had identified:

Reflection following debugging emphasized useful clues from each debugging epitode.
Students were prompted to recall what difference they were trying to fix, what type of bug
had caused that problem, and whether Similar differences were always caused by similar
bugs. For structural cues, students were asked how the program was structured, Where the

bug had been found in that structure, and what clues did (or could have) helped them to

locate the bug more easily. This prompting was detigned to help students develop abstract
rules about the discrepancy-bug mappings and ways to distinguish them as Well at about
useful StrUttUral cues. The recording approach was included to keep a written record of
the discrepancy-bug rules for use in later debUgging Sithationt. The records were kept on
large charts with the headings: "If this goes wrong," and "Then check for thlt bug."

Graphics and list-processing classes kept separate charts on two sides of a mobile bulletin
board; The graphics side was not visible dUring list-processing classes nor the list-

processing side during graphics classes so that the students could het loam the MappingS
for a Mini=ctitirse they were not currently taking.
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During the entire mini-course, only one half-hour lesson was devoted explicitly to
debugging. (Transcripts of one graphics and one list-processing lesson from= ths first end

Second mini=courIM presentations are provided in Appendix III.) During the rest of the
course, posters with the debugging method, the discrepancy-bug mappings, and the location

clues were available. Also, students were continually prodded to use the debugging skills

and challenged to find new mappings.

3.4 Data collection issues

The primary goal of studying skill acquisition and transfer is to understand the detailed
mechanisms and internal structures of cognitive processes involved. Several methodS were

used to ensure collection of data that would facilitate this understanding. The students'
behavior on all of the tests was videotaped to get a detailed record of the intermediate
StepS in the Solution pmcesses. In addition, students were encouraged to think aloud so
that the goals, strategies, and knowledge influencing their solutions could also be recorded.

To encourage thinking aloud, 'Students worked in pairs for some of the tests. Alpo, to

prevent students from getting stuck on any one part of a test, thk,experimenter intervened
to provide help when impasses were reached. Each of these rnetteraSkSaicek ISSuee M. be
discussed in more detail in the following sections.

3.4.1. Protocols

in order to study cognitive processes, the data collected must include more than

information about the end-product of the process. The intermediate steps in subjects'

SolutionS reveal the path(s) by which they reached them. Each ;'r.p in the process may
depend on having particular knowledge about the current situation and may produce new
knowledge as well. Think-aloud protocols were used to solicit verbal expresSiOn of the

knowledge cUrrently active in the subjects' short-term memory (Ericsson and Simon. 1984).

To capture these intermediate steps and relevant knowledge, all of the tests were

videOtaped. Fbe all cOmputer tests, the camera was focused on the computer screen only.

The videotape contained a visual record of all screen activity and an auditory record of all
verbalizations by the subjects and the experimenter. For the non-programming tests, the

camera was focused on the subject's paper(s) instead of the computer screen. In both
cases the videotape also contained a record of an elapsed time indicator (accurate to the
nearest second). These recording measures should provide the information needed to
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accurately assess the complex prdceSsee involved in computer programming and debugging;

in particulari Information about the knowledge subjects had (especially that which WOUld be

COrteldered InpUt to the Operators in our model) and the goals driving their solution process.

3.4.2. Partnere

From our past experience, we expected that the children would have difficulty giving think-

aloud protocols, especially in such a cognitively demanding situation as computer
programming and debugging. For this reason, children worked in pairs during class and for
some of the teeting. We felt that the joint effort would require communication of strategies
for and knowledge about the task. This collaboration was used primarily for the benefit of
the experimenter. It would have been interesting to study the effects of joint work; however,
the current study was not designed for that purpose. Thus, one untested assumption in this
Study le that the use of partners has not distorted our results.

There are several justifications for this assumption. First, Montessori instruction Weems
collaboration so the studente in this study were used to working in pairs and small groups.
Also, pairs were chosen such that children always worked Mk si "Mew of equal ability
(Usually also Of equal age). Research on collaboration In programmimr eissassrls rce
Webb (1984) showed that students' mastery of BASIC Concepts was eOtral..When they worked
in pairs and when they worked alone but admitted that the learning processea may haVe
been quite different. Oh the other hand, Jacobson and Jackson (1986) taught business
students a course in computer programming either with small amounts of peer review or with
an eqUiValerit amount of additional instruction. They found that the students who
participated in the peer review process had higher scores on a content test and, more
importantly, used only 60% of the computer resources that the control group used. HaWkIrit

(1983) makes similar "claims for the positive impact of collaborative work on cognitive and
metacognitive skills but has not demonstrated the effect.

3.4.3. Prodding

in an attempt to minimize frustration and maximize data collection, the experimenter did
proVide help when students reached an impasse or had gone far afield of effeotive
procedures. For example, if students had been allowed to focus on only one bug for the
entire test time; then we would have 13een able to collect data only about their solution
process for that one bug. Intervention was desirable so that students would have an
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opportunity to attempt as many bugs as possible during the allotted time, thereby maximizing

the amount of data collected.

When using such Intervention, It is important to consider its effects. Therefore, the
frequency and type of intervention was noted for all tests and will be discussed In the

analysis section.

3.5 Procedures for assessing skill acquisition

TranSfer IS not posSible if learning has not taken place. In order to specify precisely
which skills were available for transfer to the non-programming tasks, skill development waS

monitored three times during each mini-course and the savings from one mini-course to the

other was measured and then tested for significance using two-way ANOVA (1St minkcourto
vs. 2nd mlnl-course and graphics vs. list-processing).

Three types of tests were used to monitor three related, but distinguishable, Ski IIS. At

each teSt time; students took three tests, each of which used the same program goal.
First, they wrote a program to accomplish the specified goal. Then, they debugged a
purpoSely buggy version of the experimenter's program to accomplish the same goal.
Finally, they edited the experinienter'S program. These three types of tests are represented
by the a, b, and c In Figure 9c.

Each student took three series of these tests during each mini-course (1, 2, and 3 in

Figure 9c). The first programming test was taken after students had some experience with

subprograms but befOre the teac!ier had stressed the usefulness of subprogramming for
simplifying the debugging process. The first debugging test was taken after spedial attentiOn

to subprograms but before debugging instruction. These first tests therefore serve as a
baseline, that is, the level of skill prior to explicit instruction. The following sections

characterize each type of test and describe the administration procedures.

3.5.1. Programming tests

For programming tests; the students were asked to write the program(s) to accomplish
some particular goal. This type of test was included to monitor developing programming

skills and to see what debugging skiliS were used spontaneously during programrhing. In

addition; the programming experience provided the students with advance underStanding of

the prograM(S) that would be encountered in the debugging test. This procedure decreased
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the comprehension demands of the debugging process, 1.0., the children were already very
familiar With what the program should do and the general way it which it should be done.

Also, familiarizing the children with the program added to the content validity of the

debugging tests since most debugging takes place in a context where the programmer is
already familiar with the program.

Students worked in pairs for the programming toStS. They were given a program plan (a

pictorial description In graphics or a written and oral description in list-processing) and asked
to write the prograM(s). The students' programming was videotaped until the program was
complete or one class period had elapsed, whichever came first. The experimenter

intervened only when students were at an Impass or were uoing far afield of the desired
goal.

The programs used In these tests were detigned to require use of all the programming
concepts learned up to that point. Graphics tests all included portions WhIth COUld most
efficiently be done using a repeat statement. Later tests Included Portions which should
have used variables and recursion; Graphics students wrote ,prortnitritedoste a farm (with
farmhouse, silo, and four identical cornstalks), a sea scene (wiih boat; sum and: seagulls of

.

various sizes), and a garden (with two rows Of flOweet decreesinir In sfze,end-twcr-differen4
sizes of butterflies). Llst-processing students wrote programs ter play Mutat* We a user, to
play an unscrambling game with a user (using recursive steppiri cr. through a. Mt); and to
Generate poetry (with some user InpUt and Sortie randorri Selection). Al) of the programs
(graphics and list-processing alike) could have been written using multiple- subprograms. In

general, the programs provided opportunities for the students to demonstrate their most
advanced skills. The program plans and the experimentert correct prograMS for

atcoMpilshing those plans are presented In Appendix IV.

3.5.2. Debugging tests

For debugging tests, the students were asked to debug a buggy version of the

experimenter's program to accomplish the Serie goal as used in the programming test.
These tests were designed to assess the students' acquisition of the mOdert Skint in a

situation where debugging was required. These tests used programs that 1he students had
not written themselves so that the bugS Would be the same for all students.

For each Mt, the students knew what the program should do since they had written their
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oWn *ellen of it already. Working in pairs, students were given the buggy programs online
and asked le fix all the bugs. The students' debugging was videotaped until' the program
worked or one clan period had elapsed, whicheVer came first.

The programs used for the debugging test were wellstructured; in other worde, they made
appropriate use of subprograms and other LOGO substructures such as repeat and
recurelon. Six bugs were added to each program. For the graphict tests, five of the bugs
were semantic bugs while only one was a syntax bug. Syntactic errors include mieSpellings,
inappropriate punctuation or spacing, and other errors which interrupt the running of the
program. Semantic errors do not stop the program from running but do CSUse faulty
output. Since syntax tends to be more of a problem for list-processing, those teste
contained three Syntax and three semantic bugs.

The bugs were chosen so that the discrepancies they caused would be fairly independent
either in space (utually for graphics) or time (usually for lists). The only other criterion for
bug selection was that there be a variety of discrepancy types in each program (size,
orientation, location, extent, missingpart, etc. for graphics and non;matchlng, wrong variable,
printed variable, etc. for lists). No attempt was made to control for the difficulty of the
programs or the bugs since the level of programming Skill was developing. Appendix V
presents the buggy programs and the buggy output for all six debugging tests (three
graphics and three lists).

3.5.3. Editing tests

For the editing tests; the student was asked to make the changes marked on a printout
of the program from the debugging test; These tests were deSigned to monitor separately
the developing skills for interacting with the computer and thereby to determine how much
of pregramming and debugging time is merely dUe tO typing and editing; They allow us to
document whether improvement of debugging times could be due merely te Improved typing
and maneuvering skills. That is, improvements in gross performance may simply be due to
the IMprOved "clerical" skills of manuevering in the editing environment. .

Students worked individually on the editing tests. The student was given the buggy
orogramt online and a hardcopy of the buggy programa with the 6 corrections marked
clearly in red ink. Each correction was pointed out to the Student Who was then asked to
make all the changes and run the program to demonstrate that it worked propetly. If the
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program did not work, either because one or more of the changes had not been made or

because the student had Introduced new bugs, the student was asked to corrett the itetoe,
and re=run the prOgram until it worked properly. The entire editing test was videotaped.

The programs used for the editing tests were the same programs Used in the debugging

tests. Students were already familiar with the program and may have even remembered
some of the 5ugs they II, found on the debugging test. The marked hard-copies are
presented In Appendix VI.

3.6 Procedures for assessing debugging transfer

Transfer is "simply applying information about a known category to a new instance"
(Bassok and Holyoak, 1986). The goal of the transfer assessments is to discover which of
the knowledge and skills available for transfer are actually applied in new InstanceS. The

new instances must, therefore, be recognizable as members of the same category and the
skills must indeed be applicable.

Choosing an appropriate "far" transfer task rarely has a prfrr4101*Pr.besie. Typically;
researchers have a plausible but vague notion of the similarity behveen the source and
target tasks (e.g., mcGilly et al., 1984). The debugging model; described in Chapter 2;
provides a way to advance the specificity of predicted transfer effects and the choice of
tasks for debugging skills.

Transfer can only be successful when the new domain IS viewed as an instance sinillar to
the base domain in a way that would make use of already learned skills appropriate. The

choice of transfer tasks must be based on the similarity of the required skills. For this
reason, the transfer test used in this study was designed to be similar to LOGO debugging

in terms of the debugging situation, the types of information available, and the location cues
available. The tests were designed only to test the transfer of debugging skills (not

programming or editing skills) since debugging skills were the subject of our tatk arialysis
and explicit instruction.
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3.8.1. Similarity between debugging programs and debugging directions

Three types of traneftr tests were designed, all of which Inv Jived detection and correction

of errors in a wrifiten set of instructions about how to achieve a well-specified goal. This

task is similar to LOGO debugging in three ways.

First, before the transfer tests began, the teacher gave Instructions which were designed

to highlight the debugging nature of the tasks. Program debugging la viewed as a situation
where a programmer has given the computer commands, the computer follows the

commands perfectly, but something goes wrong because one of . the commands IS Wrong.

The debugger's job is to find the bug in the commands and fix It so that next time it will
run correctly. The Instructions for debugging directions mimic the program debugging
situation:

"Today I would like you to read three stories. In each story, someone gives
someone else directions. The person follows the directions perfectly, but someting
goes wrong because one of the directions is wrong. Your job is to find the
problem with the directions and fix It so that next time It will be done correctly."

The cover story for each item reiterated these instructions.

Second, information about the desired and actual output is available in debugging
situations even before the programs are viewed. For debugging directions, similar

Information was provided before the directions could be viewed. In two of the three test
types, this information was in the form of pictures; however, in the third, it was in the form
of tables. From the pictures and tables, subjects could have gathered clues about the

identity of the bug and the probable location of the bug just as they could in the program
debugging situation.

Third, the lists of directions were structured in ways similar to LOGO, primarily like

subprograms but also like repeat statements. This was accomplished by the addition of
headings between sections of directions to label their purpose. Headings were printed flush
with the left margin, whereas the directions relating to them were Indented. Subjects could

use the headings to determine which sections of the directions were likely to contain the
bug just as they could use the subprogram names to guide their search for program bugs.
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3.8.2. Po UMW Solution strategle,

The folloWing example will show how the model's brute force strategy (lOw information

search) and ealCctIve search strategy (high information search) would sotve one of the

transfer items. Figure 12 showS the plan and outcome for the furniture arranging problem.
Table 7 lists the accompanying directions. Before viewing the figure, students read the
following cover Story.

MM. Fisher was moVing IMO a neW house with the help of two movers; She
asked them to arrange the fUrniture in her house and gave them a_ list of
directions to follow. The Meijer§ followed the instructions perfectly, but there was
one problem with the directions so the furniture was not arranged correctly.

The next page shOwS the way Mil. Fither wanted the furniture to look and the
way it looked after the MOWS arrariged it. Use these pictures to help you find
the problem with MrS. FiSher'S direttionS. Then fix the directions so the movers
could arrange the furniture correctly.

Insert Figure 12 about here

Comparison of the two floor plans reveals that there is a table out of ;.,place. ClOser

Inspection may reveal that the table iS in the living room. One might also notice that the.
table has been placed between two chairs in both drawings and hyootheilie that the,

confusion resulted from a misunderstanding of which two chairs. All of the directions begin
with "Here are the directions so;and=so gave to So=ahd=to." and end with "Change or add
one thing to fix so-and-so's directions." in most cases, the directions are divided int0 three

parts; here, one part describes how to arrange the dining room, one part the living room,

and one part the kitchen.

Insert Table 7 about here

Solving this problem would be OUite tedious for someone using a brute force strategy, as
many children did; The solver would read each line and check the picture to make sure it
was correct until the incorrect direction was located. A solver who knows to look for a
misplaced table might scan the directient Until readhing one describing the placement of a
table; This would lead to false alarms on the lines deScribirig the three other tables in the
home (especially the two which are described prior to the correct table). A sOlver Who
knows to look in the directiOnS lot the !Wing room will ignore the dining room directions and
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focus only on the Wing room ones. Depending on the other available information, the Solver

might check each of the living room commands or only the ones referring 10 tables. A

solver who noticed that the table was between twc chairs could scan for a phrase about a

table between chairs. Since the kitchen directions follow the incorrect direction and are

Independent of it, they would be ignored by all solvers who locate the bug on their first

pass through the directions.

Solvers with ail of these strategies could locate the bug and add the information to define

which two chairs the coffee table should be between. The search process, not the success
rate, is what should distinguish the different strategies. However, solvers who search more
of th directions might be more likely to false alarm and therefore be less successful. The

remaining eight tests are presented in Appendix VII.

3.6.3. Transfer tests

The three types of tests were chosen, on the basis of informal pretests, to get a range of
difficulty. Three items of each type were constructed, one each for the pre-, mid-, and
post-tests. An equal number of subjects were given each item at each test time. The

easiest problems involved directions for arranging something (setting a table, building with
blocks, or arranging furniture). The next easiest problems invoNfect,Illrections for distributing

something (paying wages, delivering trees, or ordering food). The' .rnost-dtfficult problems

involved directions for traveling somewhere (playing golf, visiting airports, or running erranas).

The tasks were always presented in order of increasing difficulty so that students would not
do poorly on an easier test purely as a result of being frustrated by a harder one.

The transfer tests were given In the computer classroom at the teacher's table. Students
worked on the tests individually and were asked to "read and think aloud" while they
worked. All work was done in a test packet which contained the three stories. pi-MLitt-9 or

tables comparing the desired outcome with the actual outcome, and a list of directions.
The entire transfer test was videotaped. In ;hit case, the camera was focused on the test
packet as it lay on the teacher's table; the teacher made sure the student kept the packet
flat while working.

The videotaped records of the students' performance were used to determine thele Search

strategies in addition to the accuracy and timing of their answers. The significance of pre-.
mld-; and post-test differences in qualitative strategy classifications will be tested using a )4:2
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analysis; and the significance of differences In OUanitatIve analysis will be tested using a

tWo;Way ANOVA (test time by test type).

To summarize; the experiment is a combination promest/p0SWeSt and taVings design in

order to assess the transfer of debugging skills (and support skills) from one LOGO context
to another and to Mesa the transfer of debugging skills from the LOGO contexts to non-

programming contexts. The debugging model, described in Chapter 2, waS Odd extentively

for designing the instruction and the transfer tests so that learning and transfer would be
maximized. Chapter 4 describes the savings from the first minl-courte to the second and
Chapter 5 discusses the transfer of debugging skills to non-programming domains.
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4. Skill acquisition

The savings seen on the second mini-course as a result of having taken the first reflects

the amount of transferable skill the students learned. Two clear, but relatively uninteresting,

saiiings have already been mentioned: the students did not need to relearn how to use the
computer and they progressed more rapidly through the lesson sequence so the second

mini-course took only 23 instead of 27 hours to complete (85% of the first mini-course time).

Students were expected to recognize the second LOGO mini-course as a new instance

where previously learned programming, debugging, and editing skills could be applied. To

the extent that the application is appropriate, the transfer should be positive. Transfer

would be neotive in a case where application of previously learned skills was detrimental in
the new situation.

Many skills would be expected to transfer from the students' first mini-course to their
second. Most obviously, the second mini-course took less time because the introductory

computer familiarization was not necessary (learning to insert the disk, turn on the computer,
run the printer, etc.) Also, graphics and list-processing use the same editor so the editing
commands are identical. Procedures are run in the same manner, except that students
must type CS (clearscreen) before each graphics run to reset the screen from the last one.
Several programming concepti might also be expected to transfer, such as the use of

subprograms, variables, and conditional statements. Some rudimentary syntactic skills would
be expected to transfer: the importance of correct spelling, spaces, and perhaps the use of
a colon before a variable, but beyond that, list-ptcessing has many syntactic rules which do
not occur in graphics and little transfer would be expected.

Most importantly, much of the debugging skill students were taught should be transferable
to the second mini-course. Certainly, the goal structure would be identical, as would most
of the location clues. The discrepancy-bug mappings would differ, except for some of the
syntax errors, 130 the procedure for using them would be the same.

4.1 Debugging skilit

The goal of the debugging analysis was to document which of the model's skills the

students were able to acquire from the direct instruction provided in both LOGO mini-
courses. There was no comparison group (a group that got no explicit instruction in
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debugging); however, the results from this analysis can be compared to the reSults from the
pilot study (Carver and Klahr, 1986) described In Chapter 2. This section will show that
when given debugging instruction based on the performance model, students were able to
acquire effectUve debugging skills. Without such Instruction, students In the pilot study

debugged poorly.

Debugging episodes were transcribed directly in terms of the model's goal structure.

Transcription sheets were copies of the model's goal structure with spaces where the goal
names used to be. Episodes were divided into cycles based on the test goal. A neW

cycle began each time the subjects ran a program or ran a series of programs without
doing anything else In between; these program runs were recorded In the TEST space.
Comments about whether or not the outcome of a test matched the plan were noted in the
EVALUATE space. Similarly, comments about the discrepancy and the proposed bug were
written in the DESCRIBE and PROPOSE spaces; comments about the knowledge of the
program structure and clues for where the bug might be in that structure were recorded in
the REPRESENT and SPECIFY spaces. The programs students edited in their search for
the bug were noted in the FIND space. Commands they read were entered in the

INTERPRET space and their assessment of the commands' correctness was entered in the
CHECK space. Finally, any comments about the change that needed to be made were
entered in the CHANGE space, while the actual replacement was entered in the REPLACE
space. The order of comments and actions was preserved by numbering each entry. The

time at the start of each cycle was also entered on the transcript. In addition, all

experimenter interaction with the pair of students was recorded on the side of the sheet.
labeled with an E. and numbered in sequence with the other events.

Figure 13 shows an idealized transcription for the last part of the POETRY test. The

example is "Ideallzed" because subjects had difficulty continuing to give protocols so they

rarely made comments about all of the goals in any one cycle: comments from a variety of
subjects have been combined to give a complete example. e example transcript begins
with a test of the program POETRY. A negative evaluation is indicated by the comment.
"Oh no!" The discrepancy was described as. "it used the wrong name" and the bug
proposed as, "It has the variables mixed up." One student asks. "which subprogram should
we try?" Both know that the program representation includes subprograms. The other
specifies the buggy subprogram as "goodbye." They edit the subprogram GOODBYE and
scan for the variable. :NAME1 is isolated and understood to be the wrong variable name.
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"It should be hello," says one Student. The students then replace :NAME1 with :HELLO

and exit the editor to retest the program. A trace of the model using the same knowledge

to debug the same program is one of the example traces provided in Appendix II.

Insert Figure 13 about here

From the debugging transcripts, several related aspects of debugging skill were coded tO

probe the students' acquisition of different parts of the model's skills: achievement, speed;

efficiency, clue gathering, and search strategies.

4.1.1. Achievement

One indication of debugging skill is the number of bugs students were able to fix during
the allotted hour. Most of the results of the skill analyses are presented in a fashion
similar to Figure 14 so it will be described in detail. Figure 14a shows the performance of
groups A and B on the three graphics tests. Group A took the graphics mini-course first

and group B took it second, after having had list-processing experience. Figure 14b shows

the performance of groups A and B on the three list-processing tests. Here, group B took
the mini-course first and group A second. The irregular pattern from test,. 1 to 2 to 3 on
these graphs reflects the differences in problem difficulty. The teMS were not

counterbalanced since the programming concepts used on the . tests reflected the order of
instruction in the course.

There are several more important patterns to extract from these figures. The first pattern

to consider Is the relationship between the graphics and list-processing graphs. The second

pattern to extract from these graphs is the relationship between the lines representing the
two mini-courses. A consistent pattern between the first and second mini-course lines on
each graph would indicate the savings resulting from the first mini-course experience.

Figure 14c summarizes the results; it highlights the two important patterns (graphics versus

list-processing and first versus second mini-course) and deemphasizes the irregular pattern of

the three 'tests within a mini-course. For the purpose of this graph. Zile within mini-courte

tests are considered essentially as three trials so the scores have been averaged to yat a

score for each mini-course as a whole. For the remaining figures of this type the

discussion will focus only on these patterns of results.

Figures 14a and b show that during the second mini-courses. all of the students fixed all
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of the slx bugs within the hour, whereas, in the first mini=courses, they did not, F (1,76)

23.15, p < .01. Figure 14c shows the aggregate results; the improvement from the first

mini-course to the second mini-course was the same for the graphics and list-processing
tests, F (2,76) .06.

insert Figure 14 abOUt here

4.1.2. Speed

The debugging speed was also measured. In cases when the StudontS corrected ill six
bugs, this included all debugging time up to but not Including the final run (when the
program worked correctly). When the students did not correct all Six bugs, the time was
measured up to but not including the program run that confirmed their last correct fix. ThiS

adjustment excludes time at the end of the session spent on bugs thAt were never
corrected; thus the speed measure includes only time spent on bugs that were fixed. For
all pairs, the total time was divided by the number of bugs fixed. The model makes no
predictions about the absolute debugging time, but the time wouid be expected to discrease

at debugging skill improves since strategies would shift from bruterforce to more focused
search which requires fewer subgoais.

Fig UreS 15a and b compare the performance of. students an ther-grapttcs and list-

processing tests in the first and second mInPCOUrSeS. The graphfdt grOUps took almost two
minutes longer per bug than the list-processing groups. F (1,76) = 7.45, p < .01. Figure

15c shows the same results in terms of the time savings on the second mini-course tests as
a result of having taken the first mini-ccurse. Savings for the list;prOteSting iettt Wat about
half and for the graphics tests was about one-third; F (1;76) = 42.59; p < .01.

Insert Figure 15 about here

4.1;3; Efficiency

AS debugging skill improves, students should also take fewer cycles (each isolated test
goal initiates a cycle) to fix each bug. Perfect debUgging (When cities are available and
accurate) requires only one cycle to locate and correct each bug. TO assess thiS

improvement, the number of cycles per bug was measured. As with time, the total number
of cycles was used In cases where students corrected ail six bugs: however, the number of
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cycles up to the last correct fix was used In caSes where all the bugS Were not corrected.
Once ageln, the number of cycles was divided by the number of bugs fixed.

Figures 16a end b show the improvements in efficiency from the fieSt Mink-course to the
Sold Ond fOr eaCh test, F (1,76) - 12.64, p < ;01. The graphics groups took more 4,0109
than the list-processing groups to fix each bug, F (1,76) 62.46, p < .01. In the second
mini-course, the list-processing group was averaging close to the perfect One Ode per bug.

Se Verdi groUpS Of StUdents actually took fewer than one cycle per bug because they fixed
several bugs in one program without exiting to retest the program in between. Figure 16c
dertiOnstrates the savings for each course as a whole. For both groups, the savings Wet
approximately 1 cycle per bug.

Insert Figure 16 about here

In order to accOunt for the differences between the two groups and for the savings from
the first mini-course to the second, the debugging process waS ConSidered in More &del.
The following deacriptIons will concentrate more on the savings tiiimsAkte two mini-courses
rather than on differences between tests within a mini-course.

4.1.4. Pre-search clue gathering

-

Comments about the discrepancy, the bug, and the bug'S location were scored as correct
or IncorreCt arid as Made prior to or after the first command identified as the bug. AS

students' knowledge of discrepancy-bug mappings and of location cues increased, the

proportion of correct comments should increase. The total number would aCtually deCreate
as they they improve Since debugging will take fewer cycles; Also, the proportion of

comments made before suggesting a command as the bug should intreate if the students
learn the gOal structure of the model which stresses the value of seeking cues to narrow
the search;

StudentS Made very few comments overall, perhaps because the task was so cognitively
demanding. Stur ,nts described the discrepancy aloud for about half of the bugs, but tiny
proposed bugs for only about 1/4 or 1/3 of the bugs prior to beginning their search.

Location descriptions were more frecv.!,yr? than bug proposals but were Still offered for lett
than half of the bugs. Students in the second mini-course made fewer comments about the
discrepancy, the bug, and its location because they took fewer cycles to isolate each bug.
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Figure 17 shows the percentage of these comments that were accurate for a) discrepancy,

b) bug, and c) location comments. Accuracy was slightly higher for .1Ist-procestting

debugging. Comments about the identity of the bug were least likely to be accurate. The

savings between mini-courses was minimal.

Insert Figure 17 about here

However, Figure 18 shows that the savings between the first and second mini-courses is in

the percentage of. comments made prior to beginning to search for the bug. Particularly for

bug proposals, the students are learning the value of proposing the bug before searching so

that the search can be selective.

Insert Figure 18 about here

4;1;5; Faulty search

At the same time, evidence of poor debugging behavior would.be expected to decrease;
Such behavior can be measured as the number of .carect-iTubprOgrams the students

erroneously edit, the number of false alarms Ihey make (correermtiownands.Adentlfied as the

bug), the number of times they abandon their search for a partIciiiii;itrow and the amount
of help they need from the experimenter;

The number of times the students looked into a subprogram that dld not contain the bug

(or information relevant to the bug such as variable values) should decrease as the students

learn to use clues for locating the bug. The subprogram structure of the buggy programs

was easy for the students to recognize because the subprograms that had been loaded
were displayed on the computer screen at the beginning of the test. Students rarely

misjudged which subprogram did which part of the program because the subprogram names

were related to their function. The mean number of times subjects looked into a program

that did not coniain the bug ranged from 2 to 3 per test (i.e., per 6 bugs). Most of these

errors resulted from forgetting the names of the programs or forgetting what subprograms
existed. The amount of brute force search (reading and checking each command in a

program) did decrease from the first mini-course to the second. The number of instances

of brute force decreased from 28 to 14 for the graphics tests and from 13 to 1 for the list-
processing tests.
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Many students actually fvused too much on the subprograms, forgetting that they were

called by another program. For example, most students added a SETPOS command to the

WAVES subprogram when the waves were positioned incorrectly rather than changing the

faulty SETPOS command in the main SEASHORE program; they never looked Into the

SEASHORE program to see whether a positioning attempt had been made. Also, when

testing subprograms independently on graphics tests, students were bothered when a figure

ran off the screen even if it had not done so when the main program ran; they often added

positioning commands to the subprogram even when there was no positioning bug.

The number of correct commands which were mis-identified as the bug (false alarms) were

tallied. The false alarms were also categorized according to whether the studInts actually

changed the command or only proposed the change and whether the command was in the

same subprogram as the actual bug. Improved search strategies should decrease the

number of false alarms, particularly those in subprograms other than the one actually
containing the bug. In fact, the number of false alarms dropped from 206 to 150 from the

first graphics mini-course to the second and even more dramatically kom 87 to 27 for the
list-processing ests. The difference between the magnitude 4-,:iiisizi1amme for the two
different LOGO domains is not surprising in view of the vast differeactrin- Mir total number

of commands in the programs and the greater similarity between- Instance& at each
command (e.g., there are many indistinguishable FD comMands in one Owl*, larogram).

The percentage of false alarms in the wrong subprogram remained at 15% fai both graphics

mini-courses but decreased from 310/0 to 7% from the first to the second list-processing
mini-course.

The high number of false alarms accounts for many of the extra cycles the students took
to correct the bugs. Because punctuation is so complicated in list-processing, poorer

students adopted a trial and error replacemom strategy for fixing punctuation (brackets to

quotes, quotes to brackets etc.) when they could not identify the bug.

The number of times students abandon their search (which the model would never do)

should also decrease; in fact, subjects rarely abandoned their search (though this is partly

a result of the availability of help from the experimenter). There were 13 instances of
abandoned search during the first graphics mini-course and 10 during the first list=processing

mini-course. In the second mini-course, the number of abandoned searches decreased to 9

and 4. In addition, students were more likely to restart an abandoned search in the second
mini-course.
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4.1.8. Incorrect changes

For each bug that was correctly Identified, the number of changes It took to get the
correct command was tallied. Incorrect fixes were scored as either syntactic or semantic

errors. Incorrect fixes should decrease as the students become better programmers, though

not necessarily as they become better debuggers.

Attempts tO determine the appropriate argument for a command once the bug had been

Identified accounted for an average of 1 extra cycle per bug. There was no Improvement In

the subjects' ability to make changes once the bug had been identified on graphics tests.
The debugging instruction did not provide any help for generating the correct command

once the bug had been Identified. For list-processing, however, the Identification of the bug

almost specifies the appropriate change. For example, discovering that a variable has been

printed Inside a list Imp !lee that the appropriate flx is to remove It from the Ilst, whereas

knowing that a particular left turn was not enough does not Imply what the turn should have

been, only that It should be more. Extra cycles to determine the correct flx decreased from

an average of .4 per bug to .1 per bug as students became more familiar with the

appropriate changes for each bug.

4.1.7. Experimenter help

Each Instance of experimenter help was scored for the type of information it provided the

students: description of the discrepancy, Interpretation of a command, recognition of a false

alarm, Identification of the bug, location of the bug. specification of the change,

recommendation of strategies, or reminder of something they had previously done or said.

As students begin to debug like the model. they should need less help from the

experimenter. In particular, as debugging strategies improve, students should need less help

gathering clues to narrow their search, less help correcting false alarms (since they should

be making fewer), less help choosing strategies, etc. For the list-processing tests, the

amount of help subjects needed decreased markedly from 177 instances in the first mini-

course to only 80 in the second. The biggest difference for the list-processing group was

on the second test which included FIRST-BUTFIRST recursion, conditional statements, and

counters. Apparently, the group that had graphics background had less difficulty dealing

with these concepts than the group with no prior experience, perhaps because they had

encountered tall recursion and conditional statements before. However, the amount of help

needed on the graphics tests did not decrease: there were 150 instances of help in the first
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mini-course and 184 In the second. Much of this help is related to other poor debugging
strategies such as the high number of false alarms and Incorrect fixes.

4.1.8. Additional testing Strategies

Finally, there are many additional strategies which could facilitate debugging, such as

doing extra test runs to better describe the discrepancy and specify the location of the bug,

testing subprograms rather than the main program when appropriate, using mock input

during test runs rather than taking the time to use correct input, making multiple changes

between test runs when bugs are relatively independent, seeking additional information from

the program titles or from within subprograms not containing the bug (such as looking for a

variable setting), or seeking information from the mappings chart. In fact, students used
these strategies only in a few select instances when they were recommended by the
experimenter. Many of the students did, however, begin testing subprograms separately

after being shown how useful a technique it was. Since these strategieS were not part of
the explicit instruction (because they are not a part of the model), it is not surprising that
students did not use them well.

4.1.9. Reaction to debugging instruction
:

Students were eager to learn better debugOngWrategieswhent. come into class -Ors
:4,.. .

period following the first debugging test. Debugging the first test Program. was ciffftcult

students in both the graphics and list-processing groups. Many of the students never found
all six bugs within the hour test period. The entire debugging lesson, including debugging
the first test program using the new strategies. took only half an hour. Most of tht

students made comments like, "Why didn't you tell us this before?" They had exper: mcee

the frustration of brute force debugging and were receptive to more successful methods.

After the one (and only) lesson focusing on debugging, students used the new stra tegies

frequently, especially asking themselves which subprogram was likely !;.1 contain a pet.,Ir4:
bug. They did not, however, make use of the list of discrepancy-bug mapploos

frequently. Some of the more common mappings were memorized early, but many stut,'...nt..;

used the reference chart only as a last resort. Nonetheless. their debugging skills wees

impressive by the end of the course. (They did at least as well if not better than the
LOGO teachers tested by Jenkins (1986) on the same programs.)
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4.2 Programming skills

The goal of the programming skill analysis.was to describe the level of programming ability

students acquire, particularly skills related to debugging skill. The analysis will emphasize

the amount of Structure students build into their programs since proper structuring makes

debugging easier (Korson and Vaishnavi, 1986). Debugging strategies will alSo be

emphasized so that the spontaneous strategies used on the programming tests can be
compared with the strategies used on the debugging tests.

The data for the programming analysis included the students' programs, the output they

produced, and the videotapes of their solution process. From the videotape, four classes of

programming behavior were transcribed: code writing, code changing (without having tested

the program), code testing, and code debugging. In addition, the students' comments about

how they were structuring their program(s) and any comments made by the instructor were

transcribed. Time was not measured because students rarely completed the programs within

the one hour limit, especially in the graphics mini-course, and because so much

experimenter intervention was required that the time measure would be difficult to Interpret.

4.2.1. Achievement

One measure of the students' programming ability is how much of the goal students
accomplished during the allotted hour. Each program goal was divided into units according

to the following principles. For graphics programs, each major part of the picture counted
as one unit. For example, the barn in the farm program had two units: the base and the
roof. in addition, independent grouping of units (such as putting four corn stalks together)

and positioning of units (such as placing the sun in the upper right hand corner of the
screen) counted as units themselves. For list-processing programs. each query (asking a

question and taking the user's input), conditional statement. response, and global variable

setting counted as a unit. In addition, several types of user friendly units were scored,
such as greeting the user, providing instructions, thanking the user. including WAIT

statements, printing blank lines, and addressing the user by name. Driver programs counted

7.3 unitt for both graphics and list-processing.

Each of the programs written by the subjects was then examined to see which of the
units had been completed, which had been attempted, and which had not been attempted.

The achievement measure for each pair was the percentage of units they completed. As
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programming skill Improves, sublects Should be able to complete a higher percentage of

units. This section will provide the qualitative results along with a general characterization of

their meaning. 'Appendix VIII contains the detailed description, including the total number of

units for each of the experimenter's programs along with the number of student programs

containing that unit.

Figures 19a and b show that students accomplished significantly more of the program goal

on the list-processing tests than on the graphics tests, F (1;68) - 58;49, p < .01;

However, students :in the second mini-course accomplished only slightly more than students

in the ffr-,i course, F (1,68) 8;32; P < ;01;

Insert Figure 19 about here

:tudents 'men with straight-line figures and/or avoided figures with curves. This

trend is evid,..mt since students tended to attempt and avoid the same units. On the FARM
test, most students attempted the barn and silo and avoided the corn stalks. 0,.

SEASHORE test, most students tried the boat and sail, and few tried the seagulls. Most

students started with the flower )n the GARDEN test and never had-711*W .for the butterfly.
.

For the list-processing tests, the students usually began with the fundamental units of the

program and added the user friendly units later (if time permitted). For the MADLIB tett,
students began with asking the user for the necessary words and printing the story: for the

SCRAMBLES test, students began with setting the global variables for the problems and
then wrote the recursive function to ask the questions: and for the POETRY test, students

started by asking the user for the necessary words. setting the global variables for the
rhymes, and printing the poem. Many pairs wrote the base part of the program during the
hour, but few students got far enough to add the user friendly units.

4.2.2. Structured programming

Another measure of programming ability is the amount of structured programming. For

LOGO programs, structured programming can be defined as appropriate use of line breaks.

subprograms, repeat statements, variables, and recursive calls. Using line breaks effectively

Is the most rudimentary structure a LOGO program can have. LOGO can handle lines of

up to 256 characters so most programs could be typed without ev.2; hitting <return>.

Alternatively, commands need not be kept together so programs could be entered with a

66



Transfer of Debugging Skill 60

<return> after each independent command (i.e., those that are not arguments to other

commands). Neither of these strategies groups commands according to what part of the

program plan they accomplish; such a strategy would be useful for later debugging and

modifying. For example, many graphics programmers keep on the same line all commands

executed after a Pentip command but before the associated Pen Down command; this allows

easy distinction between lines of commands that draw something and lines of commands

that only move the turtle. Using subprograms, repeat statements, and recursion also Serve

to organize programs by grouping commands. In addition, using variables groups like

arguments as well as allowing for similar functions to be accomplished by one program with

different Inputs.

Once again, the experimenter's program was used as a standard. One point was given

for the use of appropriate !lne breaks, one point for every subprogram call, one point for
every unique repeat statement (multiple uses of the same repeat statement were not scored

because they should have been embedded in a repeat statement themselves or written as a

separate subprogram), one point for each variable used, and one point for each recursive

call. Each of the subjects' solutions was scored for structure in the same way. For

comparison, the mean scores are reported In Figure 20 as percentages of the total for the

experimenter's program. The standard scores are presented in Appendix VIII. ".),

Insert Figure 20 about here

Students used more program structure in the list-processing course than in the graphics

course (F (1,681 92.04, p < .01), perhaps because some of the programs required

structure in order to function properly (e.g., recursing through a list requires setting the list

in a separate subprogram). On the other hand, graphics figures can almost always be
drawn in line-by-line fashion (however tedious this may be). For example, one student in the

first graphics mini-course created one corn stalk by combining FDs and turns. She did use

a repeat to make a curve, but she retyped the repeat statement six times (twice for each of

three leaves) just to make one corn stalk. Then she systematically retyped all of the code

for the one corn stalk to make a second one. She would have continued in this fashion if

the instructor had not suggested that she move on to the silo and barn. In cases where

students did use subprograms. they rarely wrote driver programs to combine them. When

such programs were written, they used chain calls (A calls B. B calls C. and C calls D
rather than A calling B, C, and D). Students did not improve from the first mini-course to
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the second, F (1,68) g 2.49. Even students in group B who had used much program

structure In the list-processing mini-course used very little after switching to graphics.

4.2;3. Common errors and misconceptions

The students misconceptions and common bugs were also catalogued In order to

characterize developing programming skill. Errors and misconceptions were consistent across

mini-courses; In some cases, students in the second mini-course actually made more errors

or demonstrated more misconceptions because they accomplished slightly more and used

slightly more advanced structuring.

The most frequent errors In graphics programming were Inaccurate arguments (moving,

turning, or repeating too much or too little). Students also made direction errors by turning

left instead of right or vice versa. Occasionally, they forgot to type part of a command,

typed part of a command twice, put spaces where they did not belong, or omitted spaces
where they did belong.

The most common misconceptions in graphics related to moves, between figures and
drawing figures with curves; Students frequently forgot to makeisfz.:*novirriween figures,

especially when using repeat to get several Identical figures (suCTr ar...faur 'corn stalks) so

the figures were drawn on top of each other. When they dld rerfretwarAw move, they
often forgot either to pick up the pen, to put down the pen, or both: PU and PD
commands were also frequently misplaced (after the move, for instance). Students also had

difficulty remembering how to use a repeat statement to draw a curve. They frequently

confused the two rules for curves: the FD distance times the repeat number equals the size

of the curve while the turn times the repeat number equals the angle of the curve. Also,

students had difficulty combining curves: they usually failed to make the appropriate turn
between curve segments.

The most common errors on list-processing tests were punctuation and spacing errors.

The most frequent of these was forgetting the parentheses around a print statement when

two or more elements were to be printed. Students had difficulty understanding conditional

statements, combining and separating functions (such as FIRST and BUTFIRST), and the

use of MAKE for setting variables to values other than the keyboard input. They also had

misconceptirms about the use of variables: they frequently used the same variable name

more than once (thereby erasing all but the last value), printed a variable inside a list (such
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that It does not get evaluated), and confused different variable names. Students in beth

graphics and list-processing mis-ordered commands and made inappropriate subprogram calls

(including unintended recursive calls).

4.2.4. Debugging during programming

The frequency of test runs was calculated to monitor how much the students actually

make use of debugging in their own programming. Students tested graphics programs

frequently, about 6 times for every program unit they accomplished. Because of the

frequent testing, bugs we:e almost always in the most recently written commands so the

debugging search was minimal. Frequently, the did not try to choose the correct command

(especially the correct argument) on their first pass; instt.,..hd, they used debugging as a
means of determining the appropriate command. In contrast, list-processing groups tested

their programs less than once per unit accomplisNd because they spent more time

composing the phrasing of their PRINT statements. Because of this Infrequent testing, they

often made the same error many times and had to correct multiple bugs after each test.

4.2.5. Independence

Students in both mini-courses needed considerable help decomposing the program goals

Into manLgeable units, particularly on the list-processing tests where they had to decide

what needed to happen in what order. The experimenter intervened to help with

decomposition 2 to 3 times for most pairs of students. Decomposition was less of a

problem for students on graphics tests, especially because they made few attempts to

structure their programs. However, graphics students had particular difficulty deciding how

to use a repeat statement to draw the sun and deciding when to use variables. List-

processing students had the most difficulty with recursive stepping through a list (used on

the SCRAMBLES test) and with Otciding on the alternate paths in a conditional statement.

Much of the structure used in the list-processing programs was created with the

experimenter's help.

The students also needed considerable help with two aspects of debugging. They needed

the most help correcting errors that had resulted from their misconceptions, in other words.

in cases where,their knowledge as well as their program needed debugging. Students also

needed help locating bugs in cases where they had used little program structure and did

not test the program frequently enough to know which part of the code was buggy. In
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these cases, they may have known what was wrong, but could not find any clues for the

bug's location. The next section will describe the debugging skills students demonstrated in

situations Where the programs were well-Structured but had been written by someone else.

The quantItative and qualitative description of the students' programming abilities

emphasizes that these students are still only novice programmers, even at the end of 50

hours of experience. Even though they were able to use program structure to guide their

debugging of the experimenter's programs, they did not incorporate such structure into their

own programs. Try's, they had more difficulty debugging their own programs than someone

else's.

Katz (1986) studied debugging on one's own versus another person's programs in LISP

and found nearly opposite results. He found that subjects needed twice as many hints
when debugging someone else's program as when debugging their own and that they were

more likely to use a backwards strategy (run the program to see what's wrong, then check

each command from the last backwards) than a forwards strategy (check each command in

order of execution) when debugging someone else's program sthan their own. The

advantage for debugging one's own program may be less pronounfor the child novices
In this study because they were not writing well-structured pritgranw wimreas the

experimenter's programs were well-structured. Korson and Vaishnavi tiney aiscr presented

evidence for the greater ease of debugging structured programs in BASIC. If the subjects

had been taught techniques for good program structuring, their debugging skills might have

been as good when debugging their own programs as when debugging the experimenter's.

Not surprisingly, me bugs which subjects failed to find in the first mini-course were usually

related to misconceptions that appeared in the programming tests. On the graphics tests.

2/3 of the subjects failed to find a wrong subprogram call (in FARM), half failed to find the

orientation bug between the two curves in the seagull. and 113 failed to find the extent bug

in the curved top of the silo. Several other bums were missed by only one pair of subjects.

usually because they ran out of time.

On the list-processing tests, the bugs subjects failed to find were again related to

misconceptions they had demonstrated on the programming tests. There were three

instances where a wrong variable name had been used or a variable name had been used

twice; in all three cases, about half of the pairs failed to correct the bug. A little less than
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half the pairs failed to find bugs dealing with conditional clauses, combining LAST and

BUTLABT, printing variables inside lists, and forgetting the parentheses around print

statements. Once again, several other bugs were missed by only one pair.

4.3 Editing skills

The goal of the editing analysis was to document the improvements in students editing

skills so that they can be compared to the improvements in debugging time. ThiS

comparison will provide a better estimate of the actual improvement in debugging time

excluding the tims It takes to maneuver within the LOGO environment.

The videotapes for the editing tests were transcribed keystroke by keystroke and the total

time was recorded from the lap counter on the videotape. Experimenter intervention was

also traiiscribed.

4.3.1. Speed

Editing time was calculated as the total time up to the beginning of the correct test run

divided by the number of keystrokes. The time/keystroke should decrease as the stucWntS

become more familiar with the keyboard.

Figures 21a and b show that students were slower at editing list-processing programs than

graphics programs (F (1,1281 .= 8.26, p < .01), though students improved in both courses.

F (1,128) = 7.38, p < .01. The improvement represents about a 15% decrease in editing

time. Despite the improvements, even the best students are only typing at a speed of 60 -

80 keystrokes (not words) per minute.

Insert Figure 21 about here

These increases In speed cannot account for the whole increase in debugging speed.

The detlugging time per bug was 2 or 3 minutes lower on each of the graphics tests and

about minutes on each of the list-processing tests in the second mini-course. Thit

improvement is roujhly a 30% savings for graphics students who had previously had list-

processing and a 50% savings for list-processing students who had previously had graphics.

Figure 22 shows the debugging time per bug minus the editing time per bug for each test.

There is still a marked improvement in debugging speed between the first and recond mini-

courses.
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Insert Figure 22 about here.......
4.3.2. Efficiency

Efficiency of editing was measured in terms of the total nurronr of keystrokes made

relative to the minimum number required. The minimum nur,b ki. was calculated using the

following guidelines. Degraded forms of commands which were nc t taught yet are accepted

by the LOGO Insrpreter were not considered. These cor.bmands actually take fewer

keystrokes and may be discovered by the students. For example, LOGO will Interpret ED

Just as it interprets EDIT; however, since LOGO is not always so forgiving (esnetially about

spaces and paired brackets), the instruction stressed proper form. Also, shouts, such as
those to get to the beginning or end of a ilne directly rather than repeating the arrow kivs,

were only considered when it was obvlous that using them would be quicker, I.e., the

bug was at the extreme end of the line.

Students in the list;processing course were less efficient eettors as well as being slowiTc

typists; F (1;128) = 8.04; p < ;01; They averaged a little avare n than twice as many

keystrokes as necessary while the graphics group averaged onli,-..6 timeek.H.the minimum

number of keystrokes; (See Figure 23.) By the second mini-course, all ot Ow. students had

Improved (F (t 128) = 39.96, "p < .01), ret.chIng the same level of editing efficiency close

to the perfect score of 1. Thus, the students who began with list-processing improved more

than the students who began with raphics, F (1,128) = 4.79, p < :05;

Insert Figure 23 about here

Each divergence from the minimum path was .categorized as one of eight types of

inefficiencies: overshooting (and backing up), mistyping (and correcting), deleting too much

(and retyping), placing the cursor incorrectly (and correcting). including extra spaces (and

deletIng them where nerenery), forgetting part or all of a change (and going back to
complete it), confusing editir g commands or principles, and taking extra steps, which uwally

means either not using a short-cut when it would save a lot of keystrokes or moving around

in the editor after the changes had been made. Errors were categorized in this way in

order to discover whether certain errors dropped out while others persisted or whether

improvement of all errors was uniform.
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The students actually make more editing errors on the second and third tests than on the

first test, perhaps because they are particularly careful on the initial test when they were

just learning how to edit. Total keystroke efficiency does not rise with the number of

inefficiencies because students may realize their error sooner and so avoid large errors. For

example, as students become bolder at using the repeating key to move across the screen,

they may actually overshoot the target more frequently, but may not overshoot It by as much

as before since they are more aware of repeating nature of the keys. Students Just

learning to edit often do not realize they are making the key repeat so they overshoot by a

lot before they even realize it. The students' most common errors were overshooting,

mistyping, deleting loo much, and taking extra steps. List-processing students also confused

many commands on the first two tests. Students rarely added extra spaces, misplaced the

cursor. or forgot to make part or all of a change. As students editing efficiency improved,

the error 7ates for all types of errors dropped.

4.3.3. Incorrect changes

The number of Incorrect edits was tallied as a measure of how careful the students are to

check the corrections they make. (See Figure 24.) Neither group made many incorrect

edits, which are errors in changes the students do not catch before leaving the editor or

edits they forget to make. In the first mini-course students only made about 1 incorrect edit

per 6 changes; in the second mini-course this lropped almost to zero, F (1,128) = 7.14, p

< .01. Even in the first minicourse, students are careful editors though they are not

particularly efficient or quick.

Insert Figure 24 about here

4.3.4. Experimenter help

On the first editing test, subjects In both groups needed the experimenter to help them

(reminding them of commands, for example), but the amount of help needed deco! dsed for

both groups in the second mini-course, F (1,128) = 35.46, p < .01. (See Figure 25.) The

list-processing students needed more help than the graphics students in the first mini-course

(F (1,1281 = 5.55, p < .05). but students in both groups needed little help from the

experimenter by the second mini-course. Thus, the savings was larger for the list-processing

tests, F (1,128) = 4.01, p < .05.
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Insert Figure 25 about here

4.3.5. GraphiCs versus list-processing

The consistency of the difference between the students learning editing in a graphics

environment and those learning editing in a list-orocessing environment was surprising,

especially since they were using identical commands. Also, the groups performance on the

debugging and programming tests does not lead to the conclusion that the groups of
students differ. It may be the case that editing Is more difficult In a list-processing domain

because of the added syntax difficulty which may cause a greater processing load. Also,

both the commands &lid the arguments are longer so there may be more chances of
misreading or mistyping even though the minimum number of keystrokes is equivalent.

Another possibility is ttat Ilstprocessing blurs the distinction between the output Pines of
text) and the program pines of text]. The consistent finding that both groups of students
reached the same level of editing skill lends support to the suggestion that learning editing

in the context of list-processing is difficult. It is not more difficult to edit liso rocessing

programs than graphics programs once the editing skills have been teamed (as demonstrated

by the good performance of the graphics group in the list-processing course), but learning
the skills is easier In a graphics environment.

4.4 Acquisition Summary

In summary, the savings measures used in each of the skill acquisit:on analyses provide a
context In which the level of skill acquired can be assessed. The large savings on the
debugging measures indicates that students did begin to acquire the model's goal structure;

The importance of the relative difficulty of the tasks is clear from the consistent pattern of

perfo, lance across various measures of the same skill. and across measures of different
skills. The most prominent instance of this effect is the large :ieorement In performance on

the second list-processing test. This test required the use of FIRST-BUTFIRST recursion, a

conditional stop statement, and a counter. all of which were relatively new concepts.

The current study was not designed to evaluate the relative difficulty of various tests but
rather to show the savings for students taking a test after having had previous LOGO
experience and debugging experience. It is clear from the improvement between the first
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mini-course and second mini-course in both graphics and lists that learning did take place.

However, It is not possible to trace the within mini-course Improvement. But, It is clear that

the debugging MINS students have acquired are abstract enough to transfer to very similar

program debugging tasks. Students in the second rr,lni-course debugged more quickly and

took fewer cycles than students taking the same tests in their first mini-course. These

savings were attributed to increasingly focused search. The next chapter will discuss how

well these search skills transfered to non-computer debugging.
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5. Debugging skill transfer

The goal of the transfer analySis was to show that the focused search strategies learned

from the explicit debugging instruction in the LOGO ero,ironment would transfer to similar

debugging Situations not involving programming.

A more detailed trace of the solution process was available from the transfer videotapes

than from the debugging tapes because on the transfer tests the students were asked to

read and think aloud. For each problem, the subject's discrepancy description, bug

proposal, and bug location comments were recorded as well as the type of scanning
strategy they used to locate the discrepancy initially. Each line the subject read and each
time the subject flipped back to look at the plan and outcome was recorded 30 that the

search process could be quantified and the search strategy characterized.

5.1 Pre-search

The subject's pre-search strategy was one focus of the analysis. The number and
proportion of correo comments about the discrepancy, the bug, the, location, and possible

strategies were counted. Students who learn the importance of seeking cues to narrow their

search before looking at the commands in the LOGO context may intruder this practice to

the new task. AS with the computer debugging, students made few ire-search comments.

However, the number of comments students made about the possible location of the bug in

the directions increased from 9 on the pre-tests to 16 on the mid-tests to 22 on the post-
tests (out of a possible 66). Also, the students needed less help describing the discrepancy

between the desired and actual outcomes; instances of help decreased from 19 to 9 to 4
for the three test-times (also out of 66). Apparently. the students are paying more attention

to the outcome information prior to beginning their search.

5.2 Qualitative search analysis

Each subject's reading and simulating strategies were also categorized separately as one
of four qualitatively different approaches. Simulation refers to actually interpreting the

direction to determine what effect it would have; usually this process involves referring to the

diagrams or tables. Students were reading and thinking aloud so them search process was

easily traceable. The worst strategy is to read or simulate haphazardly (a few lines here. a

line or two there) or to simulate nothing (subjects must at least read something in order to
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make a correction). This strategy is unlikely to successfully find the bug because it may or

may not even read the buggy line let alone bother to check it against the desired outcome.

A slightly better strategy, brute force, is to read every line and simulate every direction

(some lines are headers not directions). This strategy is likely to find the bug but
processes many unnecessary lines. Better yet is a self-terminating brute force strategy

which reads and simulates everything until the bug is located and then disregards the rest.

The best strategy is selective focus on the appropriate subsection of the program only,

maybe even only on the part near the bug. Each subject's reading and simulating

strategies for the first pass through the directions was categorized for each of the three
Items on the pre-, mid-, and post- tests. Subjects may have several strategies or

combinations of strategies at their disposal; however, their choice of strategies was expected

to shift towards more efficient strategies if they are able to learn the program debugging
strategies and transfer them to the new domain.

The students' behavior on the pretests was very much like the brute force strategy of the

debugging model. The predominant strategy was to read all the commands and simulate

none, then to go through the directions again, simulating most of_ them until the incorrect
direction was located. A change in focus on the later tests is apparent from the strategy
classifications. Figure 26 shows the reading strategies for the students -.on each type of
test. There were no differences between groups A and B so the data have been collapsed

across group. On the pre-tesl, half the students read all the lines on their first reading of
the directions. On the mid-test and the post-test. only a quarter of the subjects read all
the lines on their first pass. A little more than V, third of the students read ail the

directions or most of the directions until the bug was found and then disregarded the rest.

A quarter of the students focused only on the directions in the same subpart as the buggy

direction. Even by the mid-test, most students had shifted to a more focused strategy for

reading directions, A2 (6) = 23.33, p < .001.

Insert Figure 26 about here

The simulation strategy did not shift as quickly. Figure 27 shows the strategy shift for

each type of test; Two thirds of the students simulated none of the lines on their first

reading of the directions on the pre-test. Thus, their reading may familiarize them with the

directions, but they have not checked the directions. It could be argued that the students

can remember the discrepancies between the plan and the outcome descriptions; this may
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be true for the construction tests since they have simple diagrams, but it is unlikely to be
true for the tables and is definitely not true for the maps which are too complicated to

remember. Some students had shifted to a more focused strategy by the mid-test, but half

of the students were still not simulating any commands. By the post-test, more than two

thirds of the students were using focused strategies, A2 (6) = 33.14, p < .001 The

shifting pattern for different tests shows that students on the mid- and post-tests w,vz., least

likely to simulate commands on the construction tests where they may be able to remember

the drawings. This pattern indicates that the students developed a range of strategies and

know the conditions under which each is appropriate.

Insert Figure 27 about here

5.3 Accuracy

In addition, the changes subjects made were scored as either correct, incorrect, or re-
writes. Re-writes were. cases In which the subject dld not isolate a bug but rather added

directions to undo the problem and achieve the desired outcome. In the example describEl

above, a re-write would be adding a direction at the bottom of the page saying something

like, "Move the coffee table to between the other two chairs." The location of the change

was scored as either correct, nearby, reasonable (on a line with an understandable false

alarm, such as on another line describing a table in the example above), or incorrect.

Transfer of debugging skills from computer programming would be reflected more in the

Improved location of the correction than in the accuracy of the correction itself since there

was not Instruction relevant to the particular types of corrections.

In addition to improved strategies, the students made more correct fixes on later tests

regardless of the order in which they took the mini-courses. Figure 28 shows the increasing

percentage of subjects who made the correct change in the correct location.

Insert Figure 28 about _here
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5.4 Solution time

Also, the total time from when the subject finished reading a story to the time s/he started

making a change was measured. Improved efficiency of search should decrease the

solution time. Figure 29 shows that the time required to suggest a bug decreases by
almost half from the pre-test to the post-test as a result of the shift to the selective search

strategy, F (2,192) = 16.05, p < .01. Both the accuracy and the time figures show that

the traveling directions were the most difficult to debug, F (2,189) 19.66, p < .01. They

were the tasks on which the figure provided the least information about the nature of the

bug and on which the directions were the most difficult to simulate. The improvements on

these tasks are primarily a result of increasing use of location clues.

5.5 Checking

Insert Figure 29 about here

The total time to complete the solution was not measured because another developing

strategy actually increased the solution time. As a result of computer debugging experience,

students more frequently checked the directions after making a change. This task provided

no opportunity to re-run the directions after making a change as is possible in computer

programming; however, the students attempted to re-simulate the effect: of Ow change on
,

Pleir own to test its correctness:

The number of students who read and simulated lines after the initial bug was identified
increase. steadily across tests for all test types, 2 (4) = 13.77; p < .05. (See Figure

30.) This cf,nking strategy is largely responsible for the increase in correct responses

since checking the fix after it has been made can lead to discovering an incorrect fix.

Students rarely discovered incorrect fixes on the pre-test because they almost never

simulated the effects of the fix they made. One thing that students have clearly learned

om debugging experience is that the fix may be wrong or may make things worse. The

production system model always instructs the user to recheck the program once a fix has

been made. Even though retesting is not easy for debugging non-computer directions,

students demonstrated that they knew a very important goal: to check the fixes.

Insert Figure 30 about here
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6. Conclusions

The dream of finding transfer of high.leVel* biking Skills frOM COMpUter pkigrininting has

rapidly become a nightmare of mixed results because of failures to match the skills students

leamed with the skills target tasks required as well as because of poor methodology. The

goal of this research was to demonstrate the possibility Of achieving highlivel transfer Of

debugging skills when the relevant skills have been appropriately specified; actually learned

in the source domain; and directly useful irt the target domain, Thus; the approach used

for this research had three phases, First, a model of debugging Oh was instantiated as a

production system to specify the debugging skills students would need to learn in order to

debug well, Since students did not learn these skits spontaneously in a pilot Study; a

curriculum was designed to teach students the model's knowledge and goal structure

explicitly. Students' debugging skills were assessed during each of two minkourses and

their performance In the second minkcourse was compared to the performance of students

who look that mini.course first. Debugging skills were also assessed on nonprogramming

tests designed specifically to require similar skills to prOgram debugging. ThUS, the

transferability of debugging skills from one LOGO programming domain to a second LOGO

programming domain and to nonprogramming domains could be assail*.

6.1 Support for the thesis

The thesis that this dissertation attempts to lest can be stated siMply as fOilOws:

i Children can tern high.level thintang skills from comPUter programritIng if the

component skills are pretlsely specified and taught directly.

Once the skills have been learned, they are available lor transfer provided they

are recognizable as relevant to the target task.

The most direct support for the thesis is that the students who were taught debugging

explicitly In the context of a LOGO course 16ther graphics or list.processing) did learn

debugging skills and did transfer them to a second LOGO minicourse and to non.

programming tasks requiring debugging of directions. Their acquired focused search

strategies for debugging LOGO programs which transfered from one LOGO conth the

other and from the LOGO context to a non.programming context. The deb

learned in the first mini.course were easily recognizable as relevant to the ii

course; in fact, the comparison shows a large savings. Also, Me students quested the
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debugging charts even before debugging was Introduced in the second mini-course so they

apparently recognized the potential usefulness of the skills they had used before.

Debugging Is composed of many sub-skills which may be learned and transfered to different

degrees depending on the particular experience and tasks. Only the goal structure of

debugging was directly relevant to the non-programming task used In this study (and none of

the programming and editing skills were predicted to be relevant). Structural clues were

relevant to the extent that the directions contained headings recognizably similar to

subprograms. The strategy shifts observed on the transfer tests indicated increasing focus

on the part of the directions containing the bug (use of structural clues), decreasing

tendency to simulate irrelevant directions, and increasing attempts to retest the directions

after the fix was made.

The learning of transferable debugging skills in thls study was achieved by adding only a

small amount (1/2 to 1 hour) of gxplicit instruction. Once the desired skills had been
specified by writing the computer simulation model, the curriculum could be designed and

Implemented easily. Only gentle reminders to practice the debugging skills, the presence of

the debugging posters, and the experimenter demonstrating the skills were necessary on a

continual basis after the initial explicit instruction. It is not necessarsreao- teach a whole

course on debugging in order for the students to learn transferable ski* it h; important,

however, for the skills and the knowledge they require to be made explicit and to be used.

Perkins and Martin (1986) made a similar suggestion for remedying students early difficulties

with computer programming. They are currently testing the hypothesis that students' fragile

knowledge can be boiStered by teaching them to use metacognitive strategies to guide their

behavior. As for the debugging strategies, the explicit instruction would be minimal, but the

continued practice would be essential.

The learning and transfer of debugging skills did not depend on the children first

becoming good programmers. Since the good debugging strategies bypass the need to
interpret every command (which the pilot study showers children did poorly), debugging cam

proceed without great programming skills (though some of the most difficult bugs to correct

were also areas of difficulty in programming). Being able to debua before b9ing able to

program well is especially important since more bugs are generated by novices. Kessler

and Anderson (1986) agree that debugging can be learned prior to programming; they

taught LISP students to debug simple functions before having experience programming them.

Bassok and Hoiyoak (1986) also suggest that "interdomain transfer need not necessarily
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await achievement of exceptional expertise in the base dorneln"; in other words, the

problem-solving procedures can transfer to a target domain even when they are not always

executed flawlessly In the source domain. This possibility applies directly to the transfer of

the debugging goal Structure even though students did not know all of the discrepancy-bug

mappings for programming yet.

In addition to these positive resultS, other results suggest that the converse of the claim is

also true:

There will be no transfer of available skills that are not relevant to the target
task.

Without direct instruction, high-level skills are not likely to be learned
therefore, cannot transfer.

The results of the programming and editing tests show that the students did improve in

both areas. These skills were useful in the second mini-course and resulted In a large
savings. However, the transfer tasks were not designed so that these skills would be useful.

Detailed analysis of programming and editing skills could reveaL. tasks. to which these skilla

might transfer: however, that Issue was not the focus of this, studr....- OW research haS

shown that programming skills do transfer to relevant tasks stickr aim angle estimation

(Garlick, 1984) and figure comparison (Clements and Gullo, 1984). Similarly, while the goal

structure and structural clues for debugging transfered to the non-programming task, the

discrepancy-bug mappings for programming were not applicable and, therefore, did not

transfer. In fact, only a subset of the discrepancy-bug mappings were relevant for transfer

from graphics to list-processing or vice versa.

The LOGO skill tests aiso revealed that other high-level skills did not develop as

debugging skill did. The most difficult problem students had was with decomnosing the

programming problem in order to plan an appropriate program structure. Th.. they had

difficulty deciding which program schemas to use and how to direct the flow of control. In

fact, the level of peogram structure was low unless the program goal required it and the

experimenter offered many suggestions. The students also failed to acquire debugging

strategies that were not included in the specific instruction, such as documenting programs

and using print Statements as markers while testing programs. Students also rarely used

external information (such as symmetry clues from other parts of the program or bulletin

board reference) to ease their problem solving.
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These ume students participated in two other studies. The results support the notion that

skills that haye not been learned in the source domain cannot be expected to. tranr,er.

Vent (1986) compared these Students' planning abilities to those of a control group with MO

LOGO experience. Her task involved directing a robot to tidy a room under various

constraints (a one-armed robot with lots of gas versus a three-armed robot with_ limited gas).

She found that both the LOGO and the no-LOGO groups used poor planning strategies.

The LOGO group was better able to give a list of directions without getting lost, however.

These results are not surprising since the LOGO group was already described as having

difficulty planning and since giving directions is clearly a skill with which LOGO students

have vast experience.

Dunbar and Kiahr (1986) found that these same LOGO students were no better or worse

than students who had not had LOGO at discovering how to use the REPEAT key on a
programmable toy (Big Trak). The fact that LOGO students had no advantage is not

surprising since students do not have to discover how IndMdual commands operate in a

LOGO environment; they are told what arguments are required and what effer they have.

However, the LOGO students were expected to be at a disadvantage sinc6 use of
REPEAT in a LOGO environment is a misleading analogy for the Big Trak.

6.2 Possibilities for strengthening the evidence.-

Being able to doc!..!ment the acquisition and transfer of specific debugging skilis is strong

evidence in support of the thesis. However, the evidence could be stronger in the following

ways.

First, the results should be replicated with other students at other schools with other

teachers to show that the effects are general. Also, the design could be improved by

having various control groups either without LOGO experience or in a LOGO class without

explicit debugging instruction. A study including a comparison of two groups. one with
computer first semester and study nall second and one with the reverse schedule is already

planned for the coming fall. A second planned study includes LOGO classes from the same

grades at the same school with and without explicit instruction in debugging.

The tie between the learning and transfer of debugging skills could also be made more

direct. First, assuming that students could be taught to give better protocols, individualized

testing could be used so that the learning path for individual students could be compared to
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each student's level of transfer. A strong correlation of IndMdual learning and t-anafer
scores would be strong support for the thesis. In addition, the learning path could be
traced better by counterbalancing the tests within each mini-course.

Another important extension would be to strengthen the transfer effect. Some of the

LAO students in this study did not shift strategies as a result of the debugging instruction

7erhaps more histruction, examples, and/or practice would facilitate the shift for those

ztJdents by insuring complete and abstract learning (Smith, 1986; Bassok and Hoiyoak,

S986). Several researchers have suggested that giving a hint that a previous strategy Is

relevant would improve transfer (Gentner and Gentner, 1983; Gick and Holycak, 1983; and

Holyoak and Koh, 1986). Transfer might be Improved by giving students a hint to use their

debugging strategies. When discussing wnether exposure to the LogoWritfir microworld

would lead to bettec writing skills in general, Papert (1986) commented,

If you see transfer as an autc:matic process that needs no encouragemcit from
you [the teacher], it may or ma not. But I arr convinced that your imagintaion as
a teacfmr will show you how to use the Logo Writer programming as a transition to
pure writing.

Yet another possibility is in show that the approach works for other. hig h -1 eve I skills too.

problem decomposition and structured programming have been shown tty be very difficult for
children yet are crucial for good programming (and are helpful for good debugging). Fisher

(1986) is developing a model of how expert Programmers decompose a problem into a

programming plan. Such a inodel would be useful for designing explicit instruction in much

the same way as the Carver ?nd Kiahr (1936) debugging model was. Again, skill acquisition

could be assessed and transfer to tasks with recognizable similarity measured.

Finally, there is strength in predictability. The model must be developed to the extent that
it can predict the amount of transfer to various tasks depending on the relevance of the
learned skills. For example, we found differences between transfer tasks where the

directions had subprogram-like heading and where they did not. However, these differences

were not tested directly with controlled contexts. The goal must be to design transfer items

with predictable differences and then to test those predictions.
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6.3 Applying the findings and the approach

Attempts must also be made to apply these claims directly to educators, both those

teaching programming and those teaching Other subjects. Curriculum materials based on

the efferent findings could be developed for use in programming courses, and the possible

transfer effects could be specified In terms of the educational objectives actually used in the

scheols. This dissertation showed that students could learn focused searih strategies in a

LOGO context and transfer them to a non-programmlnp context. Such skills might also be

transferable to other complex search tasks typically encountered In school, such as locating

a partimet's entry in a dictionary or other reference book and scaning text to find a

particular piece of Inform:Alen to answer a question.

For more general apr.ability, 911 analysis/Instruction/assessment approach used here must

be described thorougl grtol tN. educators and researchers In other fields can apply It.

This dissertation restaron Pas sn.iwn that using a performance theory to guide Instruction

and assessment can lead to realizing the dream of z:..dents leamIng transferable debugging

skills. Yet, reality can only conform to the dream as researchers continue to explore the

nature of transfer and eaucators begin to utilize the findings in the classroom.
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Table 1: Discrepancy-Bug Mappings In 1.he GRAPES Model

DICREPA Lc5iPTi1 111..cetipermit SPECIFIC BUG.14,77111Wra
Orientation '.; Ong over hero MOM

imams of down"
CT n or RT n

Size

Sproad

Location

"that line - it's1 too long* Dietance FO n or SK n

"these are too close Mgt, LT n or RT n
together. or or

Distance FO n or BK n

"this is supposed to be Distance FO n or OK n
In !hi inicidW"

Extent "lots too many squares" Iteration REPEAT n
or
Recursion stop IF :x s n
or oar -k-rm

.0.1i=f WINN"
Extra part

Recursion interval HAW X +-

"it drew a Ihiv thsrs" Pen position PU OndthTd
or or _
Proram call Extra call

Wrong part "it drew corn insioad Of
a stalk"

Program cali %pitched caN

Missing part "I wanted a box there" Pen position PD omitted
or or
Program call Cali omitted

Print variablo "it printed 'score' instead PunctUation Quoted variablo
the number"

Not matching "I put the right answer tleeing
and it marked it lel rang"

READLIST or
READWORD

Wrong value "it 774nted the number Variable name Wrong variable
instead of the place" name

ERROR MESSA6E Punctuation Missing punctuation

What to ERROR MESSAGE Command Missing command
or
Missing prenthesis

No value ERROR MESSAGE Initialization MAKE "n #. no vslv.*

110 paramota.r

Don't know "this moss"

8 7
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Tobli 2: Example Trace of the GRAPES Mtdel with High information

[*1 start
top-goal: test FARM
RUN
Run the program FARM.
MATCH
Did the outcome match the plan? [yes or no)?
1 1) test-1.
1 goal-1: evaluate FARM

1 1
2) evaIuate-2.

1 1
goai-2: describe FARM

CONTRAST
What type of e-screpancy is there?
[graphics or lists] -->graphics
CONTRAST
Did you get an error message? -->no
1 1 1

3) describe-1.
I 1 1 goal-6: describe FARM
CONTRAST
What is a discrepancy between the plan and outcome?
[orientation, size, spread, location, extent,
extrapart, wrongpart, missingpart, or ?! -->wrongpart
I I I I

4) describe-2.
1111goal-b propose ',ARM
The program is probably calling the wrong subprogram.
EXAMINE
What is he subp -;:ram that actually ran?
1 I

1 1 1 5) r-opose-13.
1 I

1 1 Goal succes3ful.
1 I 1 Goal successful.
1 I

Goal successful.
1 goal-3: represent FARM
REC LL and EXAMINE
'Does the FARM program have subprograms? -->?

1 I 1 6) represent-2.
1 1 goal-8: specify FARM
EXAMINE
Is the bug in a REPEAT or IF statement? -->yes
1 1 I I 7) specify-3.J1J 1 goal-9: specify FARM
EXAMINE
Wh'Ih? -->REPEAT
11111 8) specify-4.
1 1 1 Goal successful.
1

1 Goal successful.

1
Goal successful.

1
goa1-4: find FARM

1 1 9) find=8.
1

goal-le: find r4R1
The bug is (CORN) in FARM.
((NJ) (SETPOS (130) (50) 0)) (PD) (LT (90)) (FD (260)) (BK (10)) (RT (90))
(REPEAT (4) xxx (CORN) (RT (90)) (FD (25)) (LT (90)) (B)) (PU) (FD (10)) (PD)
(SILO) (PU) (BK (50)) (PD) (RT (90)) (BARN))
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1 1 1 1 10) find-6.
1 1 1 Goal successful.
1 1 Goal successful.
1 1 goal-5: change FARM
GENERATE
How should the fix be made?
[change, delete, or insert] -->change
1 1 1 11) change-1.
1 I I go)?-11: change FARM
GENERATE
What should the (CORN) have been? -->(STALK)
1 1 1 1 12) change-2.
1111goal-12: replace FARM
ENTER, SKIP, DELETE, INSERT
((PU) (SETPOS (130) (50) (B)) (PD) (LT (901; (FD (260)) (BK (10)) (RT (90))
(REPEAT (4) (STALK) (RT (90)) (FD (25)) (LT (90)) (B)) (PU) (FD (10)) (PD)
(SILO) (PU) (BK (50)) (FD) (RT (90)) (BARN))
1 ;II I 13) replace-1.
1 1 1 1 1 goal-13: test FARM
RUN
Run the program FARM. -->ok
MATCH
Did the correction fix the problem? -->yes

I 1 I I
1 14) test-2.

I I goal-14: evaluate FARM
I I I 15) evaluatP-3.
I I 1 goal-15: test FARM

ATCH
id the o tc me match the pl-n? (yes or nol? -->yes

1 1 test-3.
1 1 goal-16: evaluate FARM
1 1 1

17) evaluate-1.
1 1 Goal suzcessful.
1 Goal successful.
Goal successful.

Goal successful.
Goal successful.

Goal successful.
oal successful.

oal successful.
Goal successful.
-- Top Goal Successful.
No Productions Applicable.
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MI* 3: Example Trace of the GRAPES Model with Low information

[flstart

top-goal: test FARM
RUN
Run the program FARM.
MATCH
Did the outcome match the plan? (yes or nor?
1 1) test--4.
1 goal-1: evaluate FARM
1 1 2) evaluate-2.

_1 croal-2: detxribe FARM
COMM ,r
What type of discrepancy is there?
[graphics or lists]
CONTRAST
D:d you get an error message?
1 1 1 3) describe-1.
1 1 1 goal-6: describe FARM
CONTRAST
What is a discrepancy between the plan and outcome?
[orientation, size, spread, location, extent,
extrapart, wrongpart, missingpart, or ?]

1 1 4) describe-2.
I goal-7: propose FARM

I I 1 5) propose-1.
1 1 Goal successful.
1 Goal successful.
Goal successful.
goal-3: represent FARM

RECALL and EXAMINE
Does the FARM program have subprograms?
1 1 1 6) represent-2.
1 1 1 goal-8: specify FARM
EXAMINE
Is the bug

III
I

EXAMINE
Is there

READ

in a REPEAT or IF statement?
7) specify-3.
goal-9: specify FARM

- ->ok

- ->no

- ->graphics

=->no

-->no

any command that could be used as a marker?
1 1 8) specify-5.
1 1 goal-10: specify FARM
I I I

9) specify-7.
1 1 Goal successful.
1 Goal successful.
Goal successful.

oal successful.
goal-4: find FARM

10) find-1.
goal-II: find FARM
1 11) find-2.
1 goal-12: interpret FARM

and INTERPRET

9 0
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(PU lifts the turtle 's pen so that no trace will be left when it moves.)

MATCH
Is PU the right command? [yes or no] -->yes

1 1
1 12)_interpret4.

1 1 I 1 goal-43: check FARM
111111_13) check-2.
1111Goal failS.
] I

1 1 goal-12: interpret FARM
READ and INTERPRET
(SETPOS places the turtle at ra specified x y coordinates.)

MATCH
Is SETPOS the right command? [yes or no] ==>yes

I I I I I
14)_interpret-4.

1 1 I I I
goal-14: Check FARM

1 1
[ 4 _1$) check-2.

1 1 I I
Goal fails.

1 1_ I I
goal-12: interpret FARM

MATCH
Is 130_the right number? [yes or no] -->yes

1 1 I I
1 16) interpret-7;

1 1 I I I
goal45: check FARM

1 1 I I I I
17) check-2.

1 f
Goal fails;

1_ 1 I I
goal-12: interpret FARM

MATCH
Is 50 ti,e right number? [yes or ] -->yes

1 1 f
18)_interpret-7.

1 1
I goal-46: check FARM

1 1 I I 1 19) check-2.

1 1 I 1
Goal failS.

1 1 I I
goal-12: interpret FARM

MATCH
Is (Bracket) the_right punctuation? [yes or ==>::es

1 1 I 1
20)_interpret-5.

1 1 I I
goal-17: check FARM

1 1 I j 21) Cheek=2;

1 1 1
Goal fails.

1 goal-12: interpret FARM
READ And INTERPRET
(PD puts the turtle 's pen down so that a trace will be left when it moves.)
MATCH
It PD the_right command? [yes_or no] -->yes

1 1 I 1 1 22) interpret-4.

1 1 I I I
goal-18: check FARM

1 1 I 1 I 1 _23) chetk=2;

1 I I I
Goal fails;

1 goal-12: interpret FARM
READ ahd INTERPRET
(LT turns the turtle to the left a ercain rt,:llber of d:2grees;)

MATCH
It LT the_right command? [yes or no)

11111 24) intervet-4;
1 1 1 1 1

goal-19: check FARM

1 1 :1 1 ! 1 25) check-2.
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1 1 1 1
Goal fails._

1 I 1 1
goal-12: interpret FARM

85

MATCH
It 90 the_right number? [yes or no] -->yes

1 1 1 1 1
26) interpret=7;

11111goal=20: check FARM

1 1 1 1 1 1
27) check=2;

1 1 1 1
Goal

_1 I J goal-12: interpret FARM
READ and INTERPRET
(FD moves the turtla forward a certain number of turtle steps.)
MATCH
Is FD the right command? [yes or no] -->yes

1 1 I 1
28) interpret-4.

1 1 I
1 goal-21: check FARM

1 1 I 1 1
29) check-2.

1 1 I
Goal fails.

1 1 I
goal-12: interpret FARM

MATCH
Is 260 the right number? [yes or no] -->yes

I I

1 1 30)_interpret-7.

1 31) check=2.
1 goal-22: check FARM

1 1 I I
Goai fails.

4_ 1 I
goal-12: interpret FARM

READ and INTERPRET
(BK moves the turtle backward a certain number of turtle steps.)
MATCH
Is BK the right command? [yes or no; -->yes

1 1 1
32) interpret-4.

1 1
1 goal-23: check FARM

1 1 1 1 33) check-2.

1 1
Goal fails.

I 1
goal-12: interpret FARM

MATCH
Is 10 the right number? [yes or no] -->yes

1 1
34) interpret-7.

1 I I
1 goal-24: check FARM

1 I J
1 1 35) check-2.

1 I I
Goal fails.

1 I I
goal-1:: interpret FARM

READ and INTERPRET
(RT turns the turtle to the right a certain number of degrees.)
MATCH
Is RT the right command? (yes or n_l -->yes

1 1
1 36) interpr(2t-4.

1 1 I 1
! gonl-25 check FARM

1 1
1 1 j 37) check-2.

'oal fails.
interrre' FARM

is =,.:1 !;: number? [yes or nol -->yes
_3) interpret-7.
goal-26, Fileck FARM
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1 1 1 1 1 39) check.',1111Goal fails.
4 I I i _40*1=12: interr:r:- FARM
READ and INTERPRET
(REPEAT executes a list of c:ommands a specified number of times.)
MATCH
Is REPEAT the right coMmand? [yes or no] ==>yes
1 1 1 I

1 40) interpret-4.
1 1 1

1 goal-27: check FARM
1 I I I I 1 41) check-2.
1 1 I I

Goal fails.
1 I I goal=12: interpret FARM
MATCH
Is 4 the right number? [yes or no] -->yes
1 I I I 1 42) interpret=7.
1 I I I

1 goa1-28: check FARM
1 I I I

1 1 43) check-2.
1 I I Goal fails.

goaI-I2: interpret FARM
Was (CORN) the appropriate subprogram call herd?
1 1 1 1 1

44) interpret-1.
1 1 1 1 1 goal-29: check FARM
The bug is the (CORN) in FARM.
((PU) (SETPOS (130)_(50) (B)) (PD) (LT (90)) ( D (260)) (BK (10)) (RT (90))
(REPEAT (4) xxx (CORN) (RT (90)) (FD (25)) (LT (90)) (B)) (PU) (FD (10)) (PD)
(SILO) (PU) (We (50)) (PD) .RT (90)) (BARN))

1 1 1 ; 45) che,
1 1 1 '7,411 success.-1.
1 1 Gt,42. successful.
1 Goal sui-...cesful.

Goal successful.
goaI-5: change FARM

GENERATE
How should the fix be made?
[change, delete, or insert] -->change
1 1 1 46) change-I.
[ [ 1 goaI-30: change FARM
GENERATE
What should the (CORN) have heea? -->(STALK)
1 1 1 1 47) change-2.

1 1 goaI-31: replace FARM
ENTLR, SKIP, DELETE, INSERT
((PU) (SETPOS (I30) (50) (B)) (PD) (LT (90)) (FD (260)) (BK (10)) (RT (90))
(REPEAT (4) (STALK) (RT (90)) (FD (25)) (LT (90)) (II)) (PU) (FD (1n)) (PD)
(SILO) (PU) (BK (50)) (PD) (RT (90)) (BARN))

48) replace-1.
11111goa1-32: test FARM
RUN
Run the pr-ram FARM.
MATCH

Did the correction fix the problem?11111( 49) test-2.
goaI-33: evaluate FARM111111150) evaluate-3.
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I -1_IIIIIgoal-341 test FARM
MATCH
Did the outcome match the plan? [yes or nol?

I I I 51) tett-3.
I goal-35: evaluate FARM

I I
1 52) evaluate-1.

1 Goal successful.

I 1 Goal successful.
1 Goal successful.

I_ Goal successful.
1 Goal successful.
Goal successful.

Goal successful.
Goal successful.

Goal successful.
-- Top Goal Successful.
No Productions Applicable.

-->yes
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Table 41: Description of the Sub lects

WM Name kasit tat' Iftalltrazitlitiage =ohm
Qkit Wag M Mgt

io
mi
Elt

BR
PE
AG
AC
AP
EC
BS

Ave.

Ave.

3 8;2 85 95 79
3 &.3 87 99 68
3 8;5 98 99 84
3 8;9 74 95 73 COMmo-dore
4 9;6 84 91 80 IBM PC
4 97 76 87 67 Apple I lc
5 9;9 98 99 98 Commotiote
4 9;10 79 87 53 TI
5 107 78 73 79 Comm:lore
5 10;10 96 98 98 IBM PC
5 11;0 95 81 36

4 9;6 86 91 80 7/11

3 8;4 77 94 68
3 8;7 46 52 41 Apple lc
3 8;7 65 71 53 IBM
5 8;10 97 96 99 IBM PC
4 93 89 99 86 IBM PC
4 9;10 64 72 53
5 10;2 93 94 86
5 10;6 81 38 51 Apple I k
5 10;7 66 71 26 Apple 1%
6 11;1 76 89 82
6 11;8 93 94 78

4.5 9,9 77 79 66 6/11

1 At the biginniej of the Nunn.
2 since the subjects span several grain, tie mores are not bornparabts *roes testi. TM 3rd
graders took tre Stentord khievement Tat, Prl miry 3, Forth E, Complete Battery. The 4th end

grathrs took tle Stinford knievement Tee, I nterets 1, Form E, Complete Battery. The
6th yriAril took Oft Mitropolitin khievement Test, I nternudlate Form KS, Complete Battery.
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Table 5: Sequence of Graphics Lessons

Each graohics lesson was approximately one hour long.

Graphics (find Mini)

1 cWonstration
2 basic cmemands
3 interactive project
4 name projects

5 REPEAT
6 r-Tves
7 PROGRAM TEST 1
B subprograms/farm projects
9 DEBUG TEST 1

10 oMginal g"jects
11 EDIT TEST I
12 original projects
13 debugging
14 variabls shape programs
15 more variables

16 PROGRAM TEST 2
17 beashore projects
16 DEBUG TEST 2
19 origmel projects
20 EDIT TEST 2
21 recursion
22 more recursion
23 PROGRAM TEST 3
24 garden projects
25 DEBUG TEST 3
26 original projects
27 EDIT TEST 3

96

Graphics (second Mini)

1 basic commands

2 name projects/SET...

3 REPEAT
4 curves
5 PROGRAM TEST 1
6 subprograms/ farm projects
7 DEBUG TEST 1

8 original projects
9 EDIT TEST 1

10 debugging
1 1 variable shape programs
12 more veriablos
13 PROGRAM TEST 2
14 seashore projects
15 DEBUG TEST 2
16 recursion
17 EDIT TEST 2

18 more recursion
19 PROGRAM TEST 3
20 garden projects
21 DEBUG TEST 3
22 original projects
23 EDIT TEST 3
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Tebb 4: Sequence of List-processing Lamm
Each list;processing lesson was approximately one hour long.

Lists (first MO

I demonstration
2 wordeendflsts
3 PRINT, MAKE, end IF
4 interview projects
5 printing
6 finish interviews
7 PROGRAM TEST I

subprograms
9 DEBUG TEST I

10 madlib projects
11 EDIT TEST I
12 quiz projects
13 debugging
14 varlables/recursion
15 variables/recursion
16 PROGRAM TEST 2
17 unscrambleprojects
18 DENIS TEST 2
19 original projects
20 EDIT TEST 2
21 RANDOM (number guessing)
22 ITEM/COUNT (sing stories)
23 PROGRAM TEST 3
24 poetrvprojects

25 DEBUG TEST 3
26 original projects

27 EDIT TEST 3

Lists (second Mini)

1 PRINT, MAKE, and IF
2 interview projects
3 printing
4 original projects
5 PROGRAM TEST 1
6 subprolrams
7 DEBUG TEST 1
8 madlib projects
9 EDIT TEST I

10 debugging
11 variables
12 variables/recursion
3 PROGRAM TEST 2

14 unscrambler projects
15 DEBUG TEST 2
16 RANDOM (number guessing)
17 EDIT TEST 2

18 ITEM/COUNT(silly stories)
19 PROGRAM TEST 3
20 poetry projects

21 DEBUG TEST 3
22 original projects

23 EDIT TEST 3
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T-ab 7: Buggy Directions for Arranging Furniture

Mime use the directions Mr& Fisher gave to the movers.

To arrow the dning rwm,
Center the china cthinet on the west wall.
Place the silver cabinet in the south-east corner.
Put the tthle in the cente- of the mom
Arrange the 6 &airs around the table evenly.

To arrfroge tt* living mem,
Place the cabinets against the west wall.
Place or* chair in front of each end of the cabinets.
Place the square tthle in the nofth-east corner.
Put the sofa on the north wall, next to the square table.
Place another chair on the south wall, across from the 90fa.
Put the toffee table between the two chairs.
Put the rocker on the east wall, next to the square tthle.

To arrange the kitehen,
Put the refrigerator in the north-west corner.
Put the dishwasher to the right of the refrAgerator.
Put the sink to the right of the dishwasher.
Put the stove to the right Of the Sink.
Place the counter next to the stove and along the east wall.
Put the oven along the east wall, next to the counter.
Place the table in the south-west corner of the room.
Arrange the 4 chairs around the table evenly.

changt or Add one thing to fix Mrs. Fisher's directions.

9 8
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Figure 1: Sample Graphics Programs

The left-hand panels list the previously stored program, and the right-hand panels illustrate
the graphic effects of the commands listed. All drawings start with the turtle positioned at
the bottom left of the drawing, oriented to the north. a) LOGO programs to draw a flower
of Variable size comprised of a line, two leaves, and ten diamonds, b) Recursive LOGO
program to draw a series of flowers decreasing in size.

iTV FLOWN 0
VD IP LEAF * MI 5 LT INIutessirrsores is
INPUT 10 OWN= * 5 ItT is1us
TO DIAMOND
REPEAT 2 IMO IT 411116 ItT 115I
IND

MIA, it TO CUM :A
MEAT 2 MUM IT REPEAT ir IT III
1001 ICS FLOWER 4

TIVELOVEIM 2
KIM= 3
WININCIP-11 2 Marl_
P1111T-40 FD I 14 IR SO re
FLOWNS S = 1

99

IICS FLOWERS 4
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Figure 2: Sample List=processIng Programs

The top half of each panel Hata the preVibUaly attired program, and the bottom half
illustrates the interactive etfecte of the cortienands listed. The program user typed the inputs
beside the rectangular cursor. The intermediate lines show the program's response. a)
LOGO program to translate one word into piglatin, b) Recursive LOGO program to translate
a sentence into plglatin, c) LOGO program to integrate the other two into a user friendly
game.

a.
TO PIGGY :W
OUTPUT (WOMB OUTFIRST :W FIRST :W "AYI
END

IPRINT PIGGY "PIG
IGPRY

ci

b.

C.

"TO RLLPI664
IF EMPTYP (OUTPUT 111
OUTPUT SENTENCE PIGGY FIRST :L ALLPIGGY BUTT IRST :L

ENO

rRINT RLLPI66Y (PORKY PIG(
ORKYPIrt WRY

-re PIGLATIN
PRINT (PLEASE TYPE R SENTENCE THAT YOU WRNT TRANSLATED INTO PIGLATINI
PRINT EILLPIGGY REROLIST
PRINT (WOULD YOU LIKE TO CONTINUE?)
MAKE "V READWORD
IF EINIALP :Y "NO (PRINT (THANKS FOR PLAYING. HRUE R NICE ORM( (PI6LRTINI
END

IIPI6LRTiN
PLEASE TYPE A SENTENCE THAT YOU WANT TRANSLATED INTO PIGLRTIN
/THIS LITTLE PIGGY WENT TO MARKET
HISTRY ITTLELRY IGGYPRY ENTWRY OTRY ARKETMRY
WOULD YOU LIKE TO CONTINUE?
IVES
PLEASE TYPE A SENTENCE THAT YOU WANT TRANSLATED INTO PI6LRTIN
PHIS LITTLE PIGGY WENT HOME
HISTRY ITTLELRY IGGYPRY ENTLURY OMEHAY
WOULD YOU LIKE TO CONTINUE?
INO
THANKS FOR PLAYING. HRH A NICE DRY!

100
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Figure 3: The Goal Structure of nal GRAPES ModM

Goal tree for the GRAPES debugging model. 41-lighlighted goals explained in text1

TEST

EVALUATE

SCRIBTO Lti FINDS CHANGE

REPLACErsPEciFyl
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Figure 4: A Sample Debugging Problem

Example of a desired output (a), the actual output (b), and the buggy_ prOgram thatproduced the flawed output (c). The bug is the call to the subprogram CORN in FARM. Itshould be a call to STALK (which In turn calls CORN).

a.

b;

c ; TO FARM
PU SETPOS [=-20 =50] PD
LT_90 FD_110 BK 10 RT 90
REPEAT 4 [CORM RT 90 FD 25 LT 901

EMI)

TO STALK
FD 15 LT 90 CORN RT 90 FD 30 CORM
FD 50 LT 90 CORN RT 90 FD 20 OK 95

END

TO CORN
REPEAT 2 [REPEAT 9 EFD 3 RT 90] RT 90]

END

102
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Figure 5: High Information Goal Tree

Goal tree generated during high-information debugging of the FARM program.. Numbers
correspond to the order in which the sub-goalt were generated. Parenthetical elements
indicate accumulation of information In working memory.

O. TEST
fiTrm

(ntatcn no)

1. EVALUATE
farm

2. DESCRIBE
fwrm

(Disc. graphics)
(Syntax no)

6. DESCRIBE
farm

wrorygpart)

3. REPRESENT 4. FIND 5. CHANGE
farm farm farm

(subprograms?)
(change)

11; SPECIFY
forth

(has other
structure)

7. PROPOSE 9. SPECIFY
farm farm

(bug could be corn)

103

10. FIND 1 I. CHANGE
farm form

(bug is CORN)
ix is STALK)

12. REPLACE
faem1

13. TEST
farm
it(f lx yes)

14. EVALUATE
farm

15. TEST
farm
iir(match yes)

16. EVALUATE
ram
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Figure 15: Companson of High and Low Informatlo-n Goal Trees

97

Comparison of schematic goal trees for high-Information (a) and low-information (b) traces.
Note that (a) is the same goal tree shown in Figure 5, with much of the detail suppressed.

a;

b;

2 3 4

4 i I
a to II

i I
It

13

II
14

15

9

10 13 14 13 IS 17 le 1_11 3o...21 71I 29
X X X X X X X X

12

104

SI

33

33
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Figure 1: A Pre;test/Post-test Transfer Design.

a) The typical pre-test/post-test transfer design involves testing a group of Subjects before
and after half of them receive some treatment. b) Greater improvement of the treatment
group than the no treatment group from the pre-test to the pott-teSt IS evidence of transfer
(assuming that there are no confounds in the experiment). c) In the dissertation study.
subjects were _tested at three times: before, during, and after LOGO experience including
debugging Instruction. 1, 2, and 3 stand for three types of tests given at each time: a. b.
and c represent three different vertiont which were used so that the tests could be
counterbalanced across tett time.

a;

C .

I Treatment Lc4

INo Treatment(

Trootmont
No Trestmont

Pretest

Debugging
Direction

1 (o, b. or c)
2 (s. b. or c)
and
3 (e. b. or c)

Posttest

Debugging
-Directions-

1 (c b; or ci
2 (a; b; or c)
end
3 (o; b; or c)

105

Debugging
Direction&

I Cd. b,, or c)
2 (o; b; or c)
and
3 (a; b; or c)
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Figure Patterns of Results Suggested by Alternative Hypotheins.

99

a) One alternative hypothesis Is that transfer effects are purely the result of maturation
during the time between the testa. If thls is the case, then the younger subjects should
score lower on the pre-tests than the older students and lower on tile post-tests than the
older subjects ever were (because the difference In their ages Is greater than the test
interval). b) A second alternative hypothesis is that transfer effects are the result of practice
on the tests. In this case, improvements should be constant across all nine tests (three at
each test time) rather than showing increases primarily between test times.

a.

b.

PreTest 111dTest PostTest

- Tr &Mir
Test Familiarity

1 2 3 4 5 6 7 8 9

PreTest MidTast PostTest

106
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Figure 1: A Savings Transfer Design.

a) A typical savings design involves two groups of subjects doing two tasks ..in different
orders. b) Transfror is indicated by better performance on task A by the group doing task B
first and by better perfOrmance on task B by the group doing task A first. c) In the
dissertation study, the two groups of subjects took two LOGO mini-courses (graphics and list-
processing) In different orders. In each course. they took three series of tests, each of
which had three items (programming, debugging, and editing).

a.

b.

C.

Group 1

Group 2

Group 1

Group 2

1410

1st Task

GreOlcs

s, b. c a.b.c a. b.c

List Processing

4.
S. b, c a. b.c a; b, c

107

2nd Task

00.

List Processing

e, b, c s, b, c s, b, c

Greptcs

e, b. c e; b; c Sb, c
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Figure 10: A Combinwd Pre-tesUPost-test and Savings Cies.

This figure Is a combination of FigureS 7c and 9c; it shows the complete design...

Group 1
Graphics

-A%
I. bi C di bi c di bi

Group 2
List Processing

-)1/4
, b, c a, b, c a, b, c

List Processing

4.\
a, b, c a, b, c a, b, c

Graphics

i bi c ai bi c di bi

101

Debugging
irections_

Debugging
Directions

Debugging
irection

1 fe, k or c)
2 fe, k or c)
and
3 Ca, k or c)

1 (a, bi or c)
2 (di bi or c)
and
3 (e, bi or c)
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1 (a, k or c)
2 Cs, a, or c)
sod
3 Ca, 0, or c)
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Roe. 11: The Model-BasoA Debugging instruction

Debugging instruction was derived directly from the model (with changes in wording for the
benefit of young students)._ The step-by-step debugging process taught explicitly In both
LOGO mini-courses is represented here In terms of the goal structure of the GRAPES
model.

Test a program.

If it', hot
right...

Ask gours.lf.
'Whit it the Problem?'

And 'whet type of
bug_could cause
the Problem?.

Then ask yourself.
'does the program

have subprograms?'

1/
and "where might

the_bug be?'
- In a subprogram
- In a REPEAT or IF
- after a certain

command

109

Then use the
Information to
find the bug.

Otherwise,
read even"
commend

And decide
whether It's

correct.

Once you've found the bug,
ask yeurself. ''what should

the fie be?'

Then make the fit, difd

Re-test the program.
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Figure 12: Planned and Buggy Outcomes for Arranging Furniture

Example of the discrepancy information provided on a transfer test. The bug is the coffee
table in the living room. Using this clue would help narrow the search for the buggy
direction (see Table 8).

This is lmov
the severs
rrows. It

11

41111

Ifridee
dish Q
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Figure 13: A Sample Debugging Transcript

Example transcript from a debugging test. All transcriptions were done in terms of the
model's goal structure. The moders goals are shown In parentheses below each example
statement.

It till the
wrong name.

The variables
eremilted_up.

(proems)

POETRY
Met)

Oh. no!
(eve Mete)

Which subprogram EDIT
should we trg. i6C)ODISTE,

treproom) rtINO

:NAME
Cieterpret)

Thet's
wroegl
Ccsegt)

Soodbge
(smile)

111

It should
114V2.11

:NAME
:HELLO

(chow)

PIRTRY
(test)
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Figure 14: DRhigging Success

105

Group A took graphics then liSt-processing; Group B took the mini-courses in, the reverse
order. a) Comparison of the two groups on the graphics tests, b) Comparison of the two
groups on the list-processing tests, c) Overall result: second mini-course groups found more
bugs than first mini-course groups In graphics and list-processing. The maximum number of
bugs was six.

a.

6.01

5.8
.6 5.6

5;4

7wk 5.2

5;0
u 4.0

4.6
4A
4.2
4;0

1st Minl-Course

2nd rlini-Course

1 2 3
Graphics Testh

6.0
5.8
5.6

-II 5;4
e0 5.2

e. 5.0
4.5

1 4.6
4.4

4.2
4.0

1st Mlni-Course

2rfd MInI-Course

49-42:1-0

1 2 3
List-processing Tests

112

6.0

5:8
6 5.6

5:4
* 5.2
t 5;0

4.8
4.6
4.4
4.2
4;0

---- Graphics

--List-processing

1 2
Mlni-courses
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Figure 15: Debugging Speed

106

-

Group A took graphics then llst-processing; Group B took the minl-courses in the reverse
order. a) Comparison of the two groups on the graphics tests. b) Comparison of the two
groups on the llst-processIng tests, c) Overall result: second minl-course groups found bugs
more quickly than first mlnl-course groups in graphics and list-processing.

a

12.0

11.0

10;0

9.0

8 .0

1 7 .0

6.0

5.0

4.0

1st Mini-Course

2nd Mini-Course

1 2 3
8rephics Tests

12.0

9.0

8.0

7.0

6.0

5.0

4.0

1st Minl-Course

2nd Mini-Course

.. 0

12.0

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

---- Graphics

tist-processing

3 1 2
List-processing Tests Mini-courses

113
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Figure 18: Debugging Efficiency

107

Group A took graphics then list-processing; Group B took the mini-courses irf" the reverse
elder. a) Comparison of the two groups on the graphics tests, b) Comparison of the two
groups on the list-processing tests, c) Overall result: second mlnl-course groups tOOk fewer
cycles (In terms of the model) to fix bugs than first mini-course groups in graphics and list-
processing. All students took fewer cycles on list-processing tests than on graphics tests.

a i

5.0

z 4.5
4.0

35
7/ 3.0

14

1 st 111 nl -Cows'

2nd Mlnl-Course

1 2 3
Graphics rests

5.0

2
.r 4.5

4.0

35
Zr 3.0

2.5

1.0

1st Mlni-Course

2nd Mlni-Course
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Figure 17: Amuracy of Search Comments

Group A took graphics then list-processing; Group B took the mini-courses in. the reverse
order. a) Comments describing the discrepancy, b) Comments proposing ihe bug. c)
Comments specifying the location. Accuracy of search comments was high; however, very
few search commenr; were made. There was no improvement in the accuracy of any type
of search comments.
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Figure 18: Amount of Prarch Comments

Group A took graphics then list-processing: qroup B took the mini-courses in the reverse
order. a) Comments describing the discrepancy, b) Comments proposing the bug. c)
Comments specifying the location. The percentage of comments made prior to initiating
search increassd, especially for comments proposing the bug.
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Figure 19: Amount of Program Goai Achieved

110

Group A took graphics then list-processing; Group B took the mini-courses in ..the reverse
order. a) Comparison of the two groups on the graphics tests, b) Comparison of the two
groups on the list-processing tests, c) Overall result: there was small improvement In the
percentage of program units completed in the second mini-course. Students completed
more of the program units on the list-processing tests.
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Figure 20: Amount of Program Structure

Group A took grarhics then list-processing; Group B took the mint-courses In:- the reverse
order. a) Comparison of the two groups on the graphics tests, b) Comparison of the two
groups on the Ilst-processing tests, c) Overall result: second mint-course groups added no
mere structure to their programs than first mini-course groups In graphics and list-processing.
Students in Ilst-processing did add more structure than students in graphics, however.
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Figure 22: Debugging Speed Minus Editing Speed

Group A took graphics then list-processing; Group B took the mini-courses irt, the reverse
order. The connected points show the debugging speed after subtracting the editing speed.
For reference, the unconnected points show the debugging speed without adjustment (as in
Figure 15). a) Comparison of the two groups on the graphics tests. b) Comparison of the
two groups on the list-processing tests, c) Overall result: Subtracting the editing time from
the debugging time per bug does not diminish the transfer effect.

ai b.

12.0

11.0

10.0

9.0

3.0

7.0

6.0

5.0

4.0

1st Mini-Coarse

2nd M1ni-Cour5s

1 2 3
6rsdhits

12.0

11.0

10.0

9.0

0.0

7.0

6.0

5.0

4.0

3.0

1st MIn1-1:surss

1 2 3
List-processing TosU

120

C.

12.0

11.0

II 10:0

9.0

s.o

1 7.0

6.0

5.0

4.0

3.0

-- &whim
LIst-orscassin9

1 2
Mini -courus



Transfer of Debugging Skill

Figure 23: Editing Efficiency

114

Group A took graphics then list-processing; Group B took the mini-courses in .:the reverse
order. a) Comparison of the two groups on the graphics tests. b) Comparison of the two
groups on the list-processing tests. c) Overall result: second mini-course groups were more
efficient at editing than first mini-course groups in graphics and list-processing.
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Figure 24: incorrect Eis

1 15

Group A took graphics then list-processing; Group B took the mini-courses in the reverse
order. a) Comparison of the two groups on the graphics tests. b) Comparison of the two
groups on the list-processing tests, c) Overall result: second mini-course groups made fewer
incorrect edits than first mini-course groups in graphics and list-processing.

a .

.5

.

.4
3
.2
.1

1st Mini-Course 1st Mini-Course

-2nd Mini-Couirm

1 2 3
Graphics Tests

1.4
.3

1.2
M 1.1

1.0
.9V

V .7
.6
.5
.4
:3
.2
. i

-2n4 Mini-Course

1 2 3
List-processing Tests

122

1.4
1.3
1:2

2 1.1
°ma 1.0

.9

.8

;7
.6

.4

.3
2
.1

G Qdi i
- List-processin

1 2
Mlni-courses



TritrieW of Debugging Sidil

Figure 28: Amount of Help Needed for Editing

Group A took graphics then list-processing;
order. a) Comparison of the two groups on
groups on the Hst-proceoing tests, 0) Overall
help than first mini-course groups in graphics
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Werra 28: Reading Strategies on Transfer Tests

The number of subjects who used each of the four search strategies for reading_ the buggy
directions. a) On arranging direction tests, b) On distributing direction tests, c) On travaling
direction tests. Better strategies are toward the right. Subjects shifted toward better
Strategies on the mid- and post-tests.

a;

5.

C.

22
20
le

.9 16

)2-4 NOM 0 Self-terminating

1111 Brute Force Selective

6
4
2

22
20
18
16
14
12
10

6
4
2

22
20
18

16

14
12

10

6
4
2

Pre Mid Post

Debugging Directions for Arraming

Peo Mid Post

Debugging Directions ror Distributing

Pri Mid Post

Debugging Directions for Traveling

24



ire Wer of Debugging Skill

Figure 27: Simulation Strategies on Transfer eats

The number of subjractS Who useld each of the four search strategies for simulating the
buggy directions (checking them against the output). a) On arranging direction tests. b) On
distributing direction tests, c) On traveling direction tests. Better strategies are toward the
right. Subjects shifted toward better strategies on the mid- and post-tests.
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Ftgure 21: Success for Debugging Directions

On all three types of transfer test, more subjects succeeded In debugging the.directions on
the mid- and post-tests than on the pre-test.
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Figure 29: Time to Mbug DIrectiOfli

On all three types of transfer test, subjects took less time to locate the bug..*-on the mld-
and post-tests than on the pre-test.
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Figure 30 Use of thi Chwking Stratm

For all three typo of transfer test, more subjects checked their fixes (rather than quittin4
immediately after making a change) on the mid- and post-tests than on the pre-nist.

22
20
18
16
14
12

10
8
6
4
2
0

VZ/

Arranging

Distributing

Traveling

Pre Mid

Transfer Tests

128

Post



Transfer of Debugging Skill 122

References

Anderson, J.R. (1987). Production systems, learning, and tutoring. In D. Klahr, P. Langley,

and R. Neches (Ed.), Self-modifying production systems: Models of learning and

development Cambridge, MA: Bradford Books/MIT Press.

Anderson, J.R., & Jeffries, R. (1985, in press). Novice LISP errors: Undetected losses of

information from working memory. Human-Computer interaction, .

Anderson, J.R., Boyle, C.F., Farrell, R., and Reiser, B.R. (1984). Cognitive principles in the

design of computer tutors. In Proceedings of the Sixth Annual Conference of the

Cognitive Science Society. Boulder, CO: Cognitive Science Society,

Atwood, M.E., & Ramsey, H.R. (1978). Cognitive structures in the comprehension and memory

of computer programs: An investigation of computer debugging (Tech. Rep. TR-78A21).

Army Research institute for the Behavioral and Social Sciences.

Bassok, M. & Holyoak, K.J. (1986). Schema-based interdomain transfer between isomorphic

algebra and physics problems.

Brown, J.S. and Burton, R.B. (1978). Diagnostic models for procedural bugs in basic

mathematical skills. Cognitive Science, Z 155-192.

Brown, S.W., & Rood, M.K (April 1984). Training gifted students in Logo and BASIC:

What is the difference? in Proceedings of the American Educational Research

Association Conference. New Orleans, Louisiana: AERA,

Bpmer, J.S. (1966). On cognitive growth. In J.S. Bruner, R.R. Olver, & P.M. Greenfield

(Ed.), Studies M cognitive growth. New York: WHey,

Campbell, P.F., Fein, G.G., Schoinick, EK, Frank, R.E., & Schwartz, S.S. (APril 1985).

Initial mastery of the syntax and semantics of logo. In Proceedings of the American

Educational Research Association Conference. Chicago, Illinois: AERA,

Carver, S.M. and Kiahr, D. (1986). Assessing children's logo debugging skills with a formal

model. Journal of Educational Computing Research, 2(4), 487-525.

129



Transfer of Debugging Skill 123

Cheng, P.W., Holyoak, K.J., Nisbett, R.E., & Oliver, L.M. (1986). Pragmatic versus

syntactic approaches to training deductive reasoning. Cognitive Psychology, Vol. 18.

Clements, D.H. (1985). Differential effects of computer programming (Logo) and computer-

assisted instruction on executive processes and cognitive development. Paper

presented at SRCD, Toronto, CANADA, April.

Clements, D.H. & Gullo, D.F. (1984). Effects of computer programming on young children's

cognition. Journal of Educational Psychology, 76(6), 1051-1053.

Cole, M., & Griffin, P. (1980). Cultural amplifiers reconsidered. In D.R. Olson (Ed.), The

social foundations of language and thought: Essays in honor of Jerome S. Bruner.

New York: W.W. Norton,

Cuneo, D.O. (1985). Young children and turtle graphics programming: Understanding turtle

commands. Paper presented at SRCD, Toronto, CANADA, April.

Dalbey, J., & Linn, M. (April 1984). Spider world: A robot language for learning to

program. In Proceedings of the American Educational Research Association Conference.

New Orleans; LA: AERA,

Degelman, D., Free, J.U., Scariato, M., Blackburn, J.M., & Golden, T. (1986). Concept

learning in preschool children: Effects of a short-term LOGO experience. Journal of

Educational Computing Research, 2(2), 199=206.

Dunbar, K. & Klahr, D. (1986). Development of reasoning skills about complex devices.

Working Paper.

Ericsson, KA. & Simon, FLA. (1984). Protocol analysis: Verbal reports as data. Cambridge,

MA: The MIT Press.

Fisher, C.A. (1986). How do programmers program: Coping with complexity. Working

Paper.

Garlick; 8; (1984), Computer programming and cognitive outcomes: A classroom evaluation

of Logo. Unpublished Honors Dissertation.

130



Transfer of Debugging Skill 124

Gentner, D. & Gentner, D.R. (1983). Flowing waters or teeming crowds: Mental models of

electricity. In D. Gentner & A.L. Stevens (Ed.), Mental Models. Hillsdale, N.J.:

Eribaum.

Gick, M.L., & Holyoak, K.J. (1983). Schema induction and analogical transfer. Cognitive

Psychology, 15, 1=38.

Goody, J. (1977). The domestication of the savage mind. New York: Cambridge University

Press.

Gorman, H. Jr., & Bourne, L.E. Jr. (1983). Learn.ng to think by learning Logo: Rule

learning in third grade computer programmers. Bulletin of the Psychonomic Society,

21(3), 165-167.

Greeno, J.G. (1976). Cognitive objectives of instruction: Theory of knowledge for solving

problems and answering questions. In D. Klahr (Ed.), Cognition and lnstructior

Hillsdale, N.J.: Lawrence Eribaum Associates.

Gugerty, L. & Olson, G.M. (1986). Comprehension differences in debugging by skilled and

novice programmers. In E. Soloway & S. lyengar (Ed.), Empirical Studies of

Programmers. Norwood, New Jersey: Ablex Publishing Corporation.

Hawkins, J. (April 1983). Learning Logo together: The social context. In Proceedings of

the American Educational Research Association. Montreal, Canada: AERA,

Hayes, J.R., & Simon, H.A. (1977). Psychological differences among problem isomorphs. In

N.J. Castellan, D.B. Pisoni, and G.R. Potts (Ed.), Cognitive Theory. Hillsdale, N.J.:

Lawrence Eribaum Associates.

Holyoak, K.J. & Koh, K. (1986). Surface and Structural Similarity in Analogical Transfer.

Working Paper.

Jacobson, G. & Jackson, D. (1986). Measurement of two teaching strategies for computer

programming instruction. Poster presented at the Empirical Studies of Programmers

conference.

131



Transfer of Debugging Skill 125

Jeffries; R. (March 1982); A comparison of the debugging behavior of expert and novice

programmers; in Proceedings of the American Educational Research Association. New

York, NY: AERA,

Jenkins, E.A., Jr. 0986). An analysis of expert debugging of LOGO programs. Working

Paper.

Kessler, C.M. & Anderson, J.R. (1986). A modol of novice debugging in LISP. In

E. Soloway & S. lyengar (Ed.). Empirical Studies of Programmers; Norwood; New

Jersey: Abiex Publishing Corporation.

Kleras, D.E. & Bovair, S. (1985). The acquisition of procedures from text: A production-system

analysis of transfer of training (Tech. Rep. 16 (TR=85/0NR;16)). University of Michigan.

Kotovsky, K., Hayes, J.R., & Simon, H.A. (1985). Why are some problems hard? Evidence

from Tower of Hanoi. Cognitive Psychology, 17(2), 248=294.

Kurland, D.M., & Pea, R.D. (1983). Children's mental models of recursive Logo programs.

In Proceedings of the Fifth Annual Cognitive Science Society Rochester; NY: Cognitive

Sc!ence Society,

Linn, M.C., & Fisher, C.W. (December 17 1983). The gap between promise and reality in

computer education: Planning a response. In Making our schools more effective: A

conffirence for California Educators. San Francisco, CA: ACCCEL,

Littman, D.C., Pinto, J., Le'ovsky, S., & Soioway, E. (1986). Mental models and software

maintenance; In E. Soloway & S. iyengar (Ed.), Empirical Studies of Programmers.

Norwood, New Jersey: Abiex Publishing Corporation

Mawby, R. (April 1984). Determining students' understanding of programming concepts. In

Proceedings of the American Educational Research Association Conffirence. New

Orleans, LA: AERA,

Mayer; R.E. (1981); The psychology of how novices learn computer programming.

Computing Surveys, 13, 121-141.

132



Transfer of Debugging Skill 126

McBride, S.R. (1985). A cognitive study of childmn's computer programming (Tech. Rep.

8502). University of Delaware.

Mc Glily, C.A., Poulin-Dubois, D., & Shultz, TR . (1984 ) . The effect of learning LOGO on

children's problem-solving skills.

Mohamed, M.A. (1985). The eftcts of learning LOGO computer language upon the higher

cognitive processes and the analytic/global cognitive styles of elemPntary school students.

Doctoral dissertation, School of Education, University of Pittsburgh, Unpublished

doctoral dissertation;

Newell; A; & Simon; H.A. (1972); Human problem solving. Englewood Clifft, N.J:

Prentice-Hall, Inc.

Nisbett, R.E., Krantz, D.H., Jepson, C., & Kunda, Z. (1983). The use of statistical

heuristics in everyday inductive reasoning. Psychological Review, 90, 339=363.

Olson, D.R. (1976). Culture, technology and intellect. In L.B. Resnick (Ed.), The nature of

Mtelligence. Hillsdale, NJ: Lawrence Eribaum Associates,

Ong, W.J. (1982). Orality and literacy: The technologizrng of the word. New York:

Methuen;

Papert, S. (1972). Teaching children thinking. Programmed Learning and Educational

Technology, 9, 245-255.

Papert, S. (1980). MMdstorms: Children, computers, and powerful ideas. New York: Basic

Boat.

Papert, S. (April; 1986); The next step: LcgoWriter; Classroom Computer Lsaming. , pp.

38-40;

Papert, S., Watt, D., DiSessa, A., & Welr, S. (1979). Final report of the Brookline LOGO

Project An assessment and documentation of children's computer laboratory.

Cambridge, MA: MIT DMsion for Study and Research In Education.

Pea, R.D. (April 1983). Logo programming and problem soMng; In Proceedings of the

133



Transfer of Debugging Skill 127

American Educational Research Association Conference. Montreal, Canada: AERA, Also

Tech Report number 12.

Pea, R.D., & Kurland, D.M. (1984). On the cognitive effects of learning computer

programming. In New Ideas in Psychology Elmsford, NY: Pergammon.

Pea, R.D., Hawkins, J., & Sheingold, K. (April 1983). Developmental studies on learning

Logo computer programming. In Proceedings of the Society for Research in Child

Development Conference. Detroit, MI: SRCD, Also Tech Report number 17.

Perkins, D.N. & Martin, F. (1986). Fragile knowledge and neglected strategies In novice

programmers. In E. Soioway & S. iyengar (Ed.), Empirical Studies of Programmers.

Norwood, New Jersey: Ablex Publishing Corporation.

Reed, S.K., Ernst, G.W., & Banjeri, R. (1974). The role of analogy in transfer between

similar problem states. Cognitive Psychology 6 436-450.

Roberts, R.J. Jr. (May 1984). Young children's spatial frames of reference in simple computer

graphics programming. Doctoral dissertation, Department of Psychology, University of

Virginia,

Sauers, R. & Farrell, R. (1982). GRAPES User's Manual. Department of Psychology,

Carnegie-Mellon University.

Schwartz, T.A., Evans, H., & Carltj, W.H. (April 1954). Looking into a large-scale Logo

project. In Proceedings of the American Educational Research Association Conference.

New Orleans, LA: AERA,

Sing ley, M.K and Anderson J.R; (1985); The transfer of text-edlting skill. international

Journal of Man-Machine Studies, 2Z 000-000.

Smith; S.B. (1986). How what we learn effects" transfer: An identical elements evaluation of

transr betWeen isomorphic problems. Doctoral dissertation, Department ur Psychology,

Carnegle-Melion University, Unpublished doctoral dissertation.

Spohrer, J.C. & Soloway, E; (1986): Analyzing the high frequency bugs in novice programs.

134



Transfer of Debugging Skill 128

In E. Soloway & S. lyengar (Ed.), Empirical Studies of Programmers. Norwood, New

Jersey: Ab lex Publishing Corporation.

Spohrer, J.C., Soloway, E., & Pope, E. (April 1985). Where the bugs are. In CH/ '85

Proceedings. ,

Thorndike, E. (1913). Educational psychology, Vol. II, The psychology of learning. New York:

Teachers College, Columbia University.

Vygotsky, L.S. (1978). Mind in society Cambridge, MA: Harvard University Press. M.

Cole, V. John-Steiner, S. Scribner, & E. Souberman [Eds.].

Webb, N.M. (April 1984). Problem-solving strategies arid group processes in small groups

learning computer programming. In Proceedings of the American Educational Research

Association Conibrence. New Orleans, LA: AERA,

Winston, P.H. (1977). Amficial intelligence. Reading, MA: Addison-Wesley Publishing

Company.

Yant, S.E. (1986). The effect of LOGO learning on children's planning skills. Senior Honors

Thes s, Carnegle-Melion University.

135


